RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

        Bing-huang Wang,Qian Zhang,Jun-Ming Hong 한국공업화학회 2018 Journal of Industrial and Engineering Chemistry Vol.67 No.-

        In this study, the ion-gelation method was applied to fabricate novel Fe–carbon–bentonite–alginate beads (Fe0/C-BABs). Fe0/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined Fe0/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the Fe0/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of Fe0/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of Fe0/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: 106.25 mg L−1). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: 21.43 mg L−1). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.

      • KCI등재

        PCSK9 regulates myocardial ischemia–reperfusion injury through parkin/pink1-mediated autophagy pathway

        Huang Guangwei,Bao Hailong,Zhan Peng,Lu Xiyang,Duan Zonggang,Xiong Xinlin,Lin Muzhi,Wang Bing,An Hongxin,Xiahou Luanda,Zhou Haiyan,Luo Zhenhua,Li Wei 대한독성 유전단백체 학회 2024 Molecular & cellular toxicology Vol.20 No.2

        Objectives This study aimed at investigating the role of the proprotein convertase subtilisin/Kexin type 9 (PCSK9)-mediated autophagy on myocardial ischemia/reperfusion injury (MIRI). To determine the relationship between autophagy, apoptosis, fibrosis, and inflammation in the myocardium, to provide experience in preventing and treating the myocardial ischemia/reperfusion (I/R) injury. Methods An AC16 hypoxia-reoxygenation model and a rat myocardial ischemia–reperfusion model were established. The concentrations of cardiac troponin T (cTnT) and creatine kinase-MB (CKMB) in plasma were measured by ELISA. To determine the size of the myocardial infarction, TTC/EB staining was performed. In addition to identifying pathological changes in myocardial tissue, Masson’s trichrome stains and H&E stains were used to identify pathological changes. Echocardiography was employed to detect cardiac function. Western blot analysis was then performed to detect the protein expression of Parkin, Pink1, and markers associated with autophagy (Beclin-1, p62, LC3). Results A significant increase in PCSK9 was observed in the myocardium during H/R. In the cardiac-specific PCSK9 knockdown model, cardiac autophagy was significantly inhibited, whereas cardiac-specific PCSK9 overexpression promoted cardiac autophagy. In vivo studies have demonstrated a significant decrease in cardiac autophagy when the PCSK9 inhibitor was administered. Apoptosis induced by I/R was greatly decreased, and myocardial infarction size and function were both improved by PCSK9 inhibitors. Mechanistically, the PCSK9 inhibitor improved the degree of myocardial fibrosis and inhibited the development of inflammation. Conclusions Our results demonstrated that increased PCSK9 via the parkin/pink1 signaling pathway contributes to I/R and H/R by exaggerating excessive autophagy during reperfusion/reoxygenation. In addition, the PCSK9 inhibitor blocked the development of inflammation and improved Infarct size, myocardial function, and myocardial fibrosis.

      • KCI등재

        Analytical Study on the Transverse Internal Forces of Shield Tunnel Segments due to Adjacent Excavations in Soft Clays

        Bing-qiang Zhang,Wei Huang,Fu-quan Chen,Qi-yun Wang 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.12

        Deep excavations unavoidably cause the changes in stress and displacement of surrounding soils, which further generate additional internal forces on the adjacent existing tunnel segments, and compromise the performance and stability of the tunnels. In this study, two-stage analysis method is used to theoretically calculate the additional internal forces in the tunnel segments due to laterally adjacent excavation. Based on an empirical deformation curve of diaphragm walls, the excavation-induced stress in a linear elastic soil is formulated using source-sink imaging method. A distribution model of additional external load acting on the tunnel segments due to adjacent excavation is further established, and the additional internal forces in the tunnel segments under the corresponding additional loads are estimated using elastic equation method. Parametric studies are then conducted to investigate the effects of excavation procedure, buried depth of shield tunnel, and excavation-tunnel horizontal distance on the additional internal forces in the tunnel segments. The results show that the studied parameters have significant effect on the additional internal forces in the tunnel segments due to laterally adjacent excavation. When the excavation-tunnel horizontal distance is less than the excavation depth, the accompanied effect on the additional internal forces in the tunnel segments is highly sensitive. This study can provide theoretical insights into the estimation of tunnel segment responses due to laterally adjacent excavation.

      • KCI등재

        Deterioration in strength of studs based on two-parameter fatigue failure criterion

        Bing Wang,Qiao Huang,Xiaoling Liu 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.23 No.2

        In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

      • KCI등재

        Comparison of Static and Fatigue Behaviors between Stud and Perfobond Shear Connectors

        Bing Wang,Qiao Huang,Xiaoling Liu 대한토목학회 2019 KSCE Journal of Civil Engineering Vol.23 No.1

        This paper presents an experimental evaluation for comparison of the behaviors of stud and Perfobond shear connectors under static and fatigue loading based on 20 push-out tests. The push-out tests for each type of shear connectors including three series: static tests, fatigue endurance tests and residual mechanical properties test, respectively. In static tests, the failure modes of two types of connectors are different. The elastic stiffness and ultimate slip in the load-slip curves of the Perfobond are larger than that of stud. In fatigue endurance tests, the fatigue life of the studs is 2.68 million, while the Perfobond specimens do not fail after 3.0 million numbers of cycles under the same test conditions as studs'. Compared with the stud, the relative-slip of Perfobond increased sharply in the early period. In residual mechanical properties tests, the residual bearing capacity, shear stiffness and ductility are presented and discussed. The variation rules of these three indexes for two types of connectors are the same, while the indexes of Perfobond are much larger than stud’s throughout the process. The results indicate that Perfobond connector has good ductility, better fatigue resistance and higher safety reliability. However, the economy of Perfobond connectors is not as good as studs’.

      • KCI등재

        Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

        Bing Wang,Qiao Huang,Xiaoling Liu,Yong Ding 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.4

        The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

      • Meta-analysis of Seven Randomized Control Trials to Assess the Efficacy and Toxicity of Combining EGFR-TKI with Chemotherapy for Patients with Advanced NSCLC who Failed First-Line Treatment

        Xiao, Bing-Kun,Yang, Jian-Yun,Dong, Jun-Xing,Ji, Zhao-Shuai,Si, Hai-Yan,Wang, Wei-Lan,Huang, Rong-Qing Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.7

        Background: Some recent clinical trials have been conducted to evaluate a combination of EGFR- TKI with chemotherapy for advanced NSCLC patients as second-line therapy, but the results on the efficacy of such trials are inconsistent. The aim of this meta-analysis was to evaluate the efficacy and safety of combination of EGFR-TKI and chemotherapy for patients with advanced NSCLC who failed first-line treatment. Materials and Methods: We searched relative trials from PubMed, EMBASE, ASCO Abstracts, ESMO Abstracts, Cochrane Library and Clinical Trials.gov. Outcomes analyzed were overall response rate (ORR), progression- free survival (PFS), overall survival (OS) and major toxicity. Results: Seven trails eventually were included in this meta-analysis, covering 1,168 patients. The results showed that the combined regimen arm had a significant higher ORR (RR 1.76 [1.16, 2.66], p=0.007) and longer PFS (HR 0.75 [0.66-0.85], p<0.00001), but failed to show effects on OS (HR 0.88 [0.68-1.15], p=0.36). In terms of subgroup results, continuation of EGFR-TKI in addition to chemotherapy after first-line EGFR-TKI resistance confered no improvement in ORR (RR 0.95 [0.68, 1.33], p=0.75) and PFS (HR 0.89[0.69, 1.15], p=0.38), and OS was even shorter (HR1.52 [1.05-2.21], p=0.03). However, combination therapy with EGFR-TKI and chemotherapy after failure of first-line chemotherapy significantly improved the ORR (RR 2.06 [1.42, 2.99], p=0.0002), PFS (HR 0.71 [0.61, 0.82], p<0.00001) and OS (HR 0.74 [0.62-0.88], p=0.0008), clinical benefit being restricted to combining EGFR-TKI with pemetrexed, but not docetaxel. Grade 3-4 toxicity was found at significantly higher incidence in the combined regimen arm. Conclusions: Continuation of EGFR-TKI in addition to chemotherapy after first-line EGFR-TKI resistance should be avoided. Combination therapy of EGFR-TKI and pemetrexed for advanced NSCLC should be further investigated for prognostic and predictive factors to find the group with the highest benefit of the combination strategy.

      • KCI등재

        Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides

        Ping Wang,Bing Li,Yu-Ting Pan,Yun-Zhao Zhang,De-Wei Li,Lin Huang 한국식물병리학회 2020 Plant Pathology Journal Vol.36 No.5

        The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin- dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.

      • KCI등재후보

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼