RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

        Bo-jiang Li,Ping-hua Li,Rui=hua Huang,Wen-xing Sun,Han Wang,Qi-fa Li,Jie Chen,Wang Jun Wu,Honglin Liu 아세아·태평양축산학회 2015 Animal Bioscience Vol.28 No.8

        The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

      • KCI등재

        Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

        Long, Rui-ting,Peng, Jun-bo,Huang, Li-li,Jiang, Gui-ping,Liao, Yue-juan,Sun, Hang,Hu, Yu-dong,Liao, Xiao-hui Korean Society for Molecular and Cellular Biology 2019 Molecules and cells Vol.42 No.12

        Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

      • Upregulation and Clinicopathological Significance of Long Non-coding NEAT1 RNA in NSCLC Tissues

        Pan, Lin-Jiang,Zhong, Teng-Fei,Tang, Rui-Xue,Li, Ping,Dang, Yi-Wu,Huang, Su-Ning,Chen, Gang Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.7

        Background: Recent reports have shown that nuclear enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), contributes to the precise control of gene expression and is related to several human malignancies. However, limited data are available on the expression and function of NEAT1 in lung cancer. The major objective of the current study was to profile the expression and clinicopathological significance of NEAT1 in non-small cell lung cancers (NSCLCs). Materials and Methods: NEAT1 expression in 125 NSCLC cases and paired adjacent non-cancer tissues was assessed by real-time quantitative reverse transcription-PCR (qRT-PCR). Relationships between NEAT1 and clinicopathological factors were also investigated. Results: The relative level of NEAT1 was $6.98{\pm}3.74$ in NSCLC tissues, significantly elevated as compared to that of the adjacent non-cancer lung tissues ($4.83{\pm}2.98$, p<0.001). The area under curve (AUC) of high expression of NEAT1 to diagnose NSCLC was 0.684 (95% CI: 0.619~0.750, p<0.001). NEAT1 expression was positively correlated with patient age (r=-2.007, p=0.047), lymphatic metastasis (r=-2.731, p=0.007), vascular invasion (r=-3.617, p=0.001) and clinical TNM stage (r=-4.134, p<0.001). Conclusions: This study indicates that NEAT1 might be associated with oncogenesis and progression in NSCLC, and suggests application in molecular targeted therapy.

      • SCYL1BP1 has Tumor-suppressive Functions in Human Lung Squamous Carcinoma Cells by Regulating Degradation of MDM2

        Yang, Zhi-Ping,Xie, Yong-Hong,Ling, Dan-Yan,Li, Jin-Rui,Jiang, Jin,Fan, Yao-Hua,Zheng, Jia-Lian,Wu, Wan-Xin Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.17

        SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.

      • SCIESCOPUSKCI등재

        Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

        Li, Bo-jiang,Li, Ping-hua,Huang, Rui-hua,Sun, Wen-xing,Wang, Han,Li, Qi-fa,Chen, Jie,Wu, Wang-jun,Liu, Hong-lin Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.8

        The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

      • KCI등재

        Material Enhancement Model for Austenitic Stainless Steel Sheets Subjected to Pre-stretching

        Baofeng Zheng,Gan-Ping Shu,Rui-Hua Lu,Qinglin Jiang 한국강구조학회 2019 International Journal of Steel Structures Vol.19 No.5

        Austenitic stainless steel has considerable strain hardening property, which can be utilized in the design of cold-formed stainless steel structures to eff ectively reduce project costs. Pre-stretching is a simple and fundamental cold-forming process. Material enhancement model developed for pre-stretching lays a basis for characterizing material properties in more complicated cold-forming process(e.g. cold-rolling and press-braking). In this study, a series of material tensile tests were performed to develop material enhancement models for austenitic stainless steel sheets subjected to pre-stretching. Austenitic stainless steel sheets were tensioned in six diff erent levels to introduce cold working into the sheets. Material properties of the sheets in two directions (i.e. along and perpendicular to the pre-stretching direction) were obtained through coupon tensile tests. To facilitate the development of the material enhancement models, a simplifi ed three-stage material model with six independent parameters was proposed. Enhancement model for each material parameter was developed with the plastic strain experienced in the pre-stretching process as a key factor. Key material parameters and full-range stress–strain curves at diff erent levels of pre-stretching were generated based on the proposed and the available predictive models in literatures. Comparisons of the generated material parameters and the stress–strain curves with the test ones show good agreement.

      • KCI등재

        Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

        Xiao-hui Liao,Rui-ting Long,Jun-bo Peng,Li-li Huang,Gui-ping Jiang,Yue-juan Liao,Hang Sun,Yu-dong Hu 한국분자세포생물학회 2019 Molecules and cells Vol.42 No.12

        Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

      • How to Explain the Contradiction of microRNA 200c Expression and Survival in Solid Tumors?: a Meta-analysis

        Wang, Hui-Yu,Shen, Jie,Jiang, Chun-Ping,Liu, Bao-Rui Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.8

        MicroRNA 200c is a microRNA 200 family member that plays an important role in regulation of the epithelial-to-mesenchymal transition (EMT). The prognostic value of microRNA 200c in solid tumors remains controversial because of inconsistent data. Here, we report a meta-analysis of the association of microRNA 200c expression and survival in patients with solid tumors. Pubmed was searched up to November 2013 for studies investigating microRNA 200c expression and overall survival (OS) in solid tumors. Hazard ratios (HRs) with 95% confidence intervals (CIs) for OS were extracted from each study. Pooled HR and CIs were calculated using the Mantel-Haenszel fixed-effects models. A total of five studies evaluating colorectal cancer, gastric cancer, ovarian cancer, pancreatic cancer and endometrial cancer were included in the analysis. Data were divided into tissue microRNA 200c expression group and serum microRNA 200c expression group. The combined HRs [95%CIs] estimated for OS were 0.62 [0.42-0.91] and 2.16 [1.32-3.52] respectively. Low expression of microRNA 200c in tumor tissue and high expression of microRNA 200c in serum are associated with worse survival in solid tumors. Further study is needed to elucidate this contradiction.

      • KCI등재

        Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

        ( Luo Shi-qi ),( Ni Bo ),( Jiang Ping ),( Tian Sheng-wei ),( Yu Long ),( Wang Rui-jin ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.7

        This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasetsMedian Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% 1. We design a model of “ITMF” combined with Image Processing of with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.

      • KCI등재

        Toxic Epidermal Necrolysis Induced by Sintilimab: A Case Report

        Ya-lei Lye,Bin Shan,Chen-hong Jia,Jiang Liu,Juan Hou,Wen-li Du,Rui Feng,Ping Liang 대한피부과학회 2023 Annals of Dermatology Vol.35 No.-

        Sintilimab is an anti-programmed cell death receptor-1 antibody. The phase III clinical trial ORIENT-12 confirmed the safety of sintilimab combined with pemetrexed/platinum in the treatment of advanced squamous non-small cell lung cancer. Skin reactions are the most commonly reported adverse events of immune checkpoint inhibitors and are rarely severe. We describe a case of toxic epidermal necrolysis related to sintilimab in an elderly oncologic patient. 3 weeks after immunotherapy, the patient developed an extensive rash and diffuse itching, rapidly evolving into macules, blisters, bullae and erosions. Causal evaluation was performed based on the algorithm of drug causality for epidermal necrolysis and national Food and Drug Administration qualitative analysis. The patient responded to high-dose glucocorticosteroid and supportive therapy, alongside with local wound care. If immune checkpoint inhibitors need to be extrapolated clinically, strictly following evidence-based research, promptly detecting and treating adverse reactions is crucial.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼