http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Xue‑Lian Song,Fei‑Fei Zhang,Wen‑Jing Wang,Xin‑Ning Li,Yi Dang,Ying‑Xiao Li,Qian Yang,Mei‑Jing Shi,Xiao‑Yong Qi 한국유전학회 2020 Genes & Genomics Vol.42 No.12
Background: Myocardial ischemia and reperfusion injury (MI/RI) is a complex pathophysiological process, which can lead to severe myocardial injury. The long noncoding RNA alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) has been revealed to be abnormally expressed in MI, However, its function in MI and the potential mechanism are still unclear. Objective: To evaluate the functional role of A2M-AS1 in hypoxia/reoxygenation (H/R)-induced neonatal cardiomyocytes and its potential molecular mechanism. Methods: Dataset GSE66360 was obtained from GEO database for analyzing the RNA expression of A2M-AS1 and interleukin 1 receptor type 2 (IL1R2). KEGG pathway enrichment analysis of the genes that co-expressed with A2M-AS1 was performed. Human neonatal cardiomyocytes were subjected to H/R to construct in vitro models. QRT-PCR and Western blot were adopted to test the levels of mRNA and protein. The viability and apoptosis of cardiomyocytes were tested by CCK-8 and flow cytometry assays, respectively. Results: The expression of A2M-AS1 was notably downregulated in H/R-treated cardiomyocytes. Overexpression of A2M-AS1 can notably enhance the cell viability of H/R-damaged cardiomyocytes, whereas knockdown of A2M-AS1 showed the opposite outcomes. Besides, a negative correlation was showed between A2M-AS1 and IL1R2 expression. In H/R-treated cardiomyocytes, overexpression of IL1R2 weakened the promoting proliferation and anti-apoptosis effects caused by overexpressing A2M-AS1, however, IL1R2-knockdown abolished the anti-proliferation and pro-apoptosis effects caused by silencing A2M-AS1. Conclusion: This study demonstrates the potential regulatory role of A2M-AS1/ IL1R2 axis in cardiomyocytes suffered from H/R, and provides insight into the protection of MI/RI.
The Effect of Transformation on the Virulence of Streptococcus pneumoniae
Xue-Mei Zhang,Yi-Bing Yin,Dan Zhu,Bao-De Chen,Jin-Yong Luo,Yi-Ping Deng,Ming-Fang Liu,Shu-Hui Chen,Jiang-Ping Meng,Kai Lan,Yuan-Shuai Huang,Ge-Fei Kang 한국미생물학회 2005 The journal of microbiology Vol.43 No.4
Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains 1d and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.
The Effect of Transformation on the Virulence of Streptococcus pneumoniae
Zhang Xue-Mei,Yin Yi-Bing,Zhu Dan,Chen Bao-De,Luo Jin-Yong,Deng Vi-Ping,Liu Ming-Fang,Chen Shu-Hui,Meng Jiang-Ping,Lan Kai,Huang Yuan-Shuai,Kang Ge-Fei The Microbiological Society of Korea 2005 The journal of microbiology Vol.43 No.4
Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains Id and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.
Zhang Dao-Feng,Yao Yu-Fang,Xue Hua-Peng,Fu Zi-Yue,Zhang Xiao-Mei,Shao Zongze 한국미생물학회 2022 The journal of microbiology Vol.60 No.9
A novel bacterium, designated YYF0007T, was isolated from an agar-degrading co-culture. The strain was found harboring four CRISPR-Cas systems of two classes in the chromosome and subsequently subjected to a study on polyphasic taxonomy. Pairwise analyses of the 16S rRNA gene sequences indicated that strain YYF0007T had highest 16S rRNA gene sequence similarity (92.2%) to Jiulongibacter sediminis JN- 14-9T. The phylogenomic trees based on the 16S rRNA gene and 269 single-copy orthologous gene clusters (OCs) indicated that strain YYF0007T should be recognized as a novel genus of the family Spirosomaceae. The cells were Gramstain- negative, nonmotile, strictly aerobic, and straight long rods with no flagellum. Optimum growth occurred at 28°C and pH 7.0 with the presence of NaCl concentration 1.0–3.0% (w/v). The strain showed oxidase and catalase activities. The major fatty acids were C16:1ω5c, iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant isoprenoid quinone was MK-7. The complete genome size was 4.64 Mb with a DNA G + C content of 44.4%. Further typing of CRISPR-Cas systems in the family Spirosomaceae and the phylum Bacteroidota indicated that it was remarkable for strain YYF0007T featured by such a set of CRISPR-Cas systems. This trait highlights the applications of strain YYF- 0007T in studies on the evolutionary dynamics and bacterial autoimmunity of CRISPR-Cas system as a potential model. The name Marinilongibacter aquaticus gen. nov., sp. nov. is proposed, and the type strain is YYF0007T (= MCCC 1K06017T = GDMCC 1.2428T = JCM 34683T).
Xue-Lian Zhao,Shang-Ying Hu,Qian Zhang,Li Dong,Rui-Mei Feng,Ross Han,Fang-Hui Zhao 대한부인종양학회 2017 Journal of Gynecologic Oncology Vol.28 No.4
Objective: To explore the genotype distribution of high-risk human papillomavirus (HR-HPV) and its attribution to different grades of cervical lesions in rural China, which will contribute to type-specific HPV screening tests and the development of new polyvalent HPV vaccines among the Chinese population. Methods: One thousand two hundred ninety-two subjects were followed based on the Shanxi Province Cervical Cancer Screening Study I (SPOCCS-I), and screened by HPV DNA testing (hybrid capture® 2 [HC2]), liquid-based cytology (LBC), and if necessary, directed or random colposcopy-guided quadrant biopsies. HPV genotyping with linear inverse probe hybridization (SPF10-PCR-LiPA) was performed in HC2 positive specimens. Attribution of specific HR-HPV type to different grades of cervical lesions was estimated using a fractional contribution approach. Results: After excluding incomplete data, 1,274 women were included in the final statistical analysis. Fifteen point two percent (194/1,274) of women were HR-HPV positive for any of 13 HR-HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68) and the most common HR-HPV types were HPV16 (19.1%) and HPV52 (16.5%). The genotypes most frequently detected in HR-HPV-positive cervical intraepithelial neoplasia grade 1 (CIN1) were HPV52 (24.1%), HPV31 (20.7%), HPV16 (13.8%), HPV33 (13.8%), HPV39 (10.3%), and HPV56 (10.3%); in HR-HPV-positive cervical intraepithelial neoplasia grade 2 or worse (CIN2+): HPV16 (53.1%), HPV58 (15.6%), HPV33 (12.5%), HPV51 (9.4%), and HPV52 (6.3%). HPV52, 31, 16, 33, 39, and 56 together contributed to 89.7% of HR-HPV-positive CIN1, and HPV16, 33, 58, 51, and 52 together contributed to 87.5% of CIN2+. Conclusion: In summary, we found substantial differences in prevalence and attribution of CINs between different oncogenic HPV types in a rural Chinese population, especially for HPV16, 31, 33, 52, and 58. These differences may be relevant for both clinical management and the design of preventive strategies.
Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents
( Xue Mei Tian ),( Suo Qin Zhang ),( Liang Yu Zheng ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.1
The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES.water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.
Zhang, Yan-Li,Li, Qing,Yang, Xiao-Mei,Fang, Fang,Li, Jun,Wang, Ya-Hui,Yang, Qin,Zhu, Lei,Nie, Hui-Zhen,Zhang, Xue-Li,Feng, Ming-Xuan,Jiang, Shu-Heng,Tian, Guang-Ang,Hu, Li-Peng,Lee, Ho-Young,Lee, Su-J American Association for Cancer Research 2018 Cancer research Vol.78 No.9
<P>Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P>Tumor-associated macrophages (TAM) represent key regulators of the complex interplay between cancer and the immune microenvironment. Matricellular protein SPON2 is essential for recruiting lymphocytes and initiating immune responses. Recent studies have shown that SPON2 has complicated roles in cell migration and tumor progression. Here we report that, in the tumor microenvironment of hepatocellular carcinoma (HCC), SPON2 not only promotes infiltration of M1-like macrophages but also inhibits tumor metastasis. SPON2-α4β1 integrin signaling activated RhoA and Rac1, increased F-actin reorganization, and promoted M1-like macrophage recruitment. F-Actin accumulation also activated the Hippo pathway by suppressing LATS1 phosphorylation, promoting YAP nuclear translocation, and initiating downstream gene expression. However, SPON2-α5β1 integrin signaling inactivated RhoA and prevented F-actin assembly, thereby inhibiting HCC cell migration; the Hippo pathway was not noticeably involved in SPON2-mediated HCC cell migration. In HCC patients, SPON2 levels correlated positively with prognosis. Overall, our findings provide evidence that SPON2 is a critical factor in mediating the immune response against tumor cell growth and migration in HCC.</P><P><B>Significance:</B> Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P><B>Graphical Abstract:</B> http://cancerres.aacrjournals.org/content/canres/78/9/2305/F1.large.jpg. <I>Cancer Res; 78(9); 2305–17. ©2018 AACR</I>.</P><P><B>Graphical Abstract</B></P><P> [Figure]</P>