RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        데이터 중심의 정보 시스템 도입 방법론: 고객관계관리 시스템에의 적용 사례

        박종한,이석기,Park, Jong-Han,Lee, Seok-Kee 한국데이터정보과학회 2010 한국데이터정보과학회지 Vol.21 No.2

        최근 대부분의 기업이 정보시스템 개발을 아웃소싱에 의존하면서, 도입하고자 하는 정보시스템을 효과적으로 활용하는데 필요한 데이터와 현재 기업이 가지고 있는 데이터간의 차이에 대한 사전 분석이 성공적인 정보시스템 도입을 위해 반드시 필요하다. 그 예로 고객관계관리 시스템의 도입 사례의 경우 가장 큰 실패 요인이 사전에 기업이 가지고 있는 데이터에 대한 분석을 간과한 것에 기인하고 있다. 하지만, 아직까지 데이터 관점에서 정보시스템 도입 방법론을 체계적으로 제안한 연구가 존재하지 않았다. 본 연구에서 정보시스템 도입과 관련된 데이터 비용을 사전에 분석하여 도입 의사결정에 활용할 수 있는 정보시스템 도입 방법론을 제안하고 실제 사례에서 어떻게 활용 될 수 있는지를 사례 시뮬레이션을 통해 보여주고자 한다. 제안된 방법론을 이용해 실제 기업의 정보시스템 도입 의사결정자들은 기업의 전략에 따라 다양한 정보시스템을 디자인하고 그에 따른 데이터 관련 비용을 장, 단기적인 계획 하에서 분석 가능하므로, 도입 단계에서 숨어있는 데이터 관련 비용에 의해 발생할 수 있는 정보시스템 도입 실패에 대한 위험 부담을 사전에 방지할 수 있다. While outsourcing has become a basic strategy of the information system adoption, there is an emerging needs to analyze the gap between the required data and the existing data for the new system from an adopting company's perspective. In CRM adoption failure cases, the first reason is adopting company pay no attention to the data that will support investment and systems. So far, there is no attempt to consider data driven approach in information system adoption field. Hence, we propose Information System Adoption Model based on Data (ISAMD) and show how to use in real world by simulation. By using ISAMD, information system adoption decision maker can simulate the needed data and related cost with various information system alternatives in short term, and long term planning. ISAMD can prevent the possible threat of unexpected data cost in adopting new system at the adopting decision stage.

      • KCI우수등재

        우리나라 공공데이터의 소재정보

        김기환,이창호,최보승 한국데이터정보과학회 2019 한국데이터정보과학회지 Vol.30 No.5

        As the fourth industrial revolution becomes a major issue, interest in big data is growing. Big data refers to the technology for analyzing and utilizing countless numbers of data, and public data segments close to the real world account for their utilization. In Korea, data are widely generated in the public data sector as government 3.0 policy, starting with e-government. However, the sites that provide the data are not organized and the data being delivered different from site to site, requiring a lot of information to access them. Therefore, the present status of big data and administrative data existing in the country is classified according to the institutions, contents, utilization, and disclosure levels in order to better understanding the general outline of public data providing sites. As an information on material resources of the public data is summarized, basic knowledge on the presence, content, and utilization of big data and administrative data across a country were developed and statistical utilization status, methods, values, and limit development was developed. 4차 산업 혁명이 주요 이슈로 떠오르면서 빅데이터에 대한 관심도 커지고 있다. 빅데이터는 무수히 많은 데이터를 분석하여 활용하는 기술을 의미하며, 활용 측면에서 실생활에 밀접한 공공데이터 부문이 많은 비중을 차지하고 있다. 우리나라의 경우 전자정부를 시작으로 정부 3.0을 실시하면서 공공데이터 부문에서 데이터가 광범위하게 생성되고 있다. 하지만 데이터를 제공하는 사이트가 정리되어 있지 않으며, 데이터의 제공형태도 각 사이트마다 상이하여 데이터 이용에 많은 정보를 필요로 하고 있다. 이에 본 논문에서는 국가에 존재하는 빅데이터와 행정자료의 현황을 기관, 내용, 활용 및 공개 정도 등으로 분류하여 전체 윤곽을 파악하고 이해할 수 있도록 내용을 정리하였다. 공공데이터의 소재 정보를 정리함으로써 국가전반의 빅데이터와 행정자료의 존재현황과 내용 및 활용도에 대한 기본지식을 배양하고, 통계적 활용 현황, 방법, 가치와 한계, 발전방향에 관한 소양을 쌓을 수 있게 하고자 한다.

      • KCI등재

        인접성 데이터를 이용한 추천시스템

        김진화,변현수,Kim, Jin-Hwa,Byeon, Hyeon-Su 한국데이터정보과학회 2011 한국데이터정보과학회지 Vol.22 No.1

        Recommendation systems are developed to overcome the problems of selection and to promote intention to use. In this study, we propose a recommendation system using adjacency data according to user's behavior over time. For this, the product adjacencies are identified from the adjacency matrix based on graph theory. This research finds that there is a trend in the users' behavior over time though product adjacency fluctuates over time. The system is tested on its usability. The tests show that implementing this recommendation system increases users' intention to purchase and reduces the search time. 온라인 사용자에게 선택의 어려움을 줄여주고 사용의도를 높이기 위해 만들어진 것이 추천시스템이다. 추천시스템은 정보검색과 정보필터링을 용이하게 하고, 정보 과잉의 문제를 해결하는 데에 많은 도움을 주고 있다. 본 연구의 목적은 웹 상점을 이용하는 사용자들의 클릭스트림 데이터를 분석하여 데이터 인접성의 차이를 확인하고, 이를 통해 상품추천을 제안하고자 하는 데에 있다. 본 연구에서 제안하는 추천시스템의 성과를 검증하기 위하여 실험을 통해 알아본 결과, 추천시스템 적용 전보다 적용 후에 사용자들의 구매 의도는 높아졌고 탐색시간은 줄어들었다.

      • KCI등재

        In-memory data grid 기술을 활용한 택시 애플리케이션 성능 향상 기법 연구

        최치환(Chihwan Choi),김진혁(Jinhyuk Kim),박민규(Minkyu Park),권가은(Kaaen Kwon),정승현(Seunghyun Jung),프란코나자레노(Franco Nazareno),조완섭(Wansup Cho) 한국데이터정보과학회 2015 한국데이터정보과학회지 Vol.26 No.5

        최근 빅데이터 분야에서 데이터를 메모리에 적재 후 빠르게 처리하는 인메모리 컴퓨팅 기술이 새롭게 부각되고 있다. 인메모리 컴퓨팅 기술은 과거 대용량 메모리와 다중 프세서를 탑재한 고성능서버에 적용 가능하였지만, 점차 일반 컴퓨터를 초고속 네트워크로 연결하여 분산·병렬처리가 가능한구조로 변화하고 있다. 본 논문은 In-memory data grid (IMDG) 기술을 택시 애플리케이션에 접목하여 기존의 데이터베이스의 변경 없이 성능을 향상시키는 기법을 제안한다. IMDG 기술을 적용한경우 기존의 데이터베이스 반의 웹서비스에 비해 처리속도와 처리량이 평균 6∼9배정도 증가하며, 또한 부하량에 따른 처리량 변화의 폭이 매우 작음을 확인 하였다. Recent studies in Big Data Analysis are showing promising results, utilizing the main memory for rapid data processing. In-memory computing technology can be highly advantageous when used with high-performing servers having tens of gigabytes of RAM with multi-core processors. The constraint in network in these infrastructure can be lessen by combining in-memory technology with distributed parallel processing. This paper discusses the research in the aforementioned concept applying to a test taxi hailing application without disregard to its underlying RDBMS structure. The application of IMDG technology in the application’s backend API without restructuring the database schema yields 6 to 9 times increase in performance in data processing and throughput. Specifically, the change in throughput is very small even with increase in data load processing.

      • KCI등재

        RHIPE 플랫폼에서 빅데이터 로지스틱 회귀를 위한 학습 알고리즘

        정병호,임동훈,Jung, Byung Ho,Lim, Dong Hoon 한국데이터정보과학회 2016 한국데이터정보과학회지 Vol.27 No.4

        빅데이터 시대에 머신러닝의 중요성은 더욱 부각되고 있고 로지스틱 회귀는 머신러닝에서 분류를 위한 방법으로 의료, 경제학, 마케팅 및 사회과학 전반에 걸쳐 널리 사용되고 있다. 지금까지 R과 Hadoop의 통합환경인 RHIPE 플랫폼은 설치 및 MapReduce 구현의 어려움으로 인해 거의 연구가 이루지 지지 않았다. 본 논문에서는 대용량 데이터에 대해 로지스틱 회귀 추정을 위한 두가지 알고리즘 즉, Gradient Descent 알고리즘과 Newton-Raphson 알고리즘에 대해 MapReduce로 구현하고, 실제 데이터와 모의실험 데이터를 가지고 이들 알고리즘 간의 성능을 비교하고자 한다. 알고리즘 성능 실험에서 Gradient Descent 알고리즘은 학습률에 크게 의존하고 또한 데이터에 따라 수렴하지 않는 문제를 갖고 있다. Newton-Raphson 알고리즘은 학습률이 불필요 할 뿐만 아니라 모든 실험 데이터에 대해 좋은 성능을 보였다. Machine learning becomes increasingly important in the big data era. Logistic regression is a type of classification in machine leaning, and has been widely used in various fields, including medicine, economics, marketing, and social sciences. Rhipe that integrates R and Hadoop environment, has not been discussed by many researchers owing to the difficulty of its installation and MapReduce implementation. In this paper, we present the MapReduce implementation of Gradient Descent algorithm and Newton-Raphson algorithm for logistic regression using Rhipe. The Newton-Raphson algorithm does not require a learning rate, while Gradient Descent algorithm needs to manually pick a learning rate. We choose the learning rate by performing the mixed procedure of grid search and binary search for processing big data efficiently. In the performance study, our Newton-Raphson algorithm outpeforms Gradient Descent algorithm in all the tested data.

      • KCI등재

        전진적 단계 알고리즘을 이용한 대용량 데이터와 순차적 배치 데이터의 분류

        윤영주,Yoon, Young Joo 한국데이터정보과학회 2014 한국데이터정보과학회지 Vol.25 No.6

        본 논문에서는 대용량이거나 시간에 따라 순차적으로 들어오는 데이터의 분류를 위한 전진적 단계 알고리즘을 제안한다. Adaboost 알고리즘은 노이즈가 있는 데이터에 대하여 성능이 떨어지는 것으로 알려져 있다. 이를 해결하기 위한 한 가지 방법으로 전진적 단계 선형 회귀 방법을 사용한다. 대용량 데이터나 순차적 배치 데이터의 경우에도 이러한 상황을 극복하기 위해 전진적 단계 알고리즘 방법을 적용한 방법을 제안한다. 모의실험과 실제 자료 분석을 통해 제안된 알고리즘이 좋은 성능을 보임을 알 수 있었다. In this paper, we propose forward stagewise algorithm when data are very large or coming in batches sequentially over time. In this situation, ordinary boosting algorithm for large scale data and data batch stream may be greedy and have worse performance with class noise situations. To overcome those and apply to large scale data or data batch stream, we modify the forward stagewise algorithm. This algorithm has better results for both large scale data and data batch stream with or without concept drift on simulated data and real data sets than boosting algorithms.

      • KCI등재

        빅데이터 도입을 위한 중소제조공정 4M 데이터 분석

        김재성,조완섭,Kim, Jae Sung,Cho, Wan Sup 한국데이터정보과학회 2015 한국데이터정보과학회지 Vol.26 No.5

        In order to secure an important competitive advantage in manufacturing business, an automation and information system from manufacturing process has been introduced; however, small and medium enterprises have not met the power of information in the manufacturing fields. They have been managing the manufacturing process that is depending on the operator's experience and data written by hand, which has limits to reveal cause of defective goods clearly, in the case of happening of low-grade goods. In this study, we analyze critical factors which affect the quality of some manufacturing process in terms of 4M. We also studied the automobile parts processing of the small and medium manufacturing enterprises controlled with data written by hand so as to collect the data written by hand and to utilize sensor data in the future. Analysis results show that there is no deference in defective quantity in machines, while raw materials, production quality and task tracking have significant deference. 오늘날 ICT기술의 눈부신 발전으로 많은 부분에 정보화와 자동화가 이루어져 있으며, 제조업에서도 경쟁우위를 확보하기 위해 설계, 생산 공정의 자동화와 정보시스템을 도입하고 있다. 그러나 정보화 투자 여력이 없는 영세 중소제조 기업의 경우 생산현장에서 정보화의 힘이 미치지 못하고 있으며, 작업자의 경험과 수기데이터에 의존하여 생산 공정을 관리하고 있는 실정이다. 수기데이터로 관리되고 있는 제조공정에서는 불량 발생 시 불량원인을 명확히 밝혀내는데 한계가 있다. 본 연구에서는 수기데이터로 관리되고 있는 중소제조 자동차 부품 가공공정에 대하여, 수기데이터를 수집, 향후 센서데이터를 활용할 수 있도록 중소 제조 맞춤형 분석시스템을 구축하고, 중요도가 큰 일부 공정에 대하여 품질에 영향을 미치는 핵심요인을 4M관점에서 분석하였다. 분석결과, 호기별 불량수량에는 유의한 차이가 없었으며, 원자재, 생산수량, 작업자간 유의한 차이가 있는 것으로 분석되었다.

      • KCI등재

        데이터마이닝 모형을 활용한 호흡기질환의 주요인 선별

        이제영,김현지,Lee, Jea-Young,Kim, Hyun-Ji 한국데이터정보과학회 2014 한국데이터정보과학회지 Vol.25 No.2

        데이터 마이닝이란 대량의 데이터나 복잡한 구조의 데이터들을 정교한 통계분석과 모델링 테크닉을 이용하여 정확히 식별되지 않는 패턴이나 자료간의 상관관계를 밝혀내어 여러 가지 결과를 예측해 내는 통계적 기법이다. 이러한 데이터 마이닝 기법은 금융, 통신, 유통, 의학 등 다양한 분야에 활용되는데, 본 연구에서는 의학 분야에 적용하여 호흡기질환에 영향을 끼치는 요인을 선별하였다. 분석은 2012년도 경상북도 지역사회건강조사에 참여한 사람 중 의사에게서 폐결핵, 천식, 알레르기성 비염을 진단받은 경험이 있는 호흡기질환군과 건강군으로 정리한 자료를 대상으로 하였다. 호흡기질환이 영향을 끼치는 주요인을 선별하기 위해 인공신경망, 로지스틱 회귀모형, 베이지안 네트워크, C5.0, CART 기법을 이용하였다. 공정한 모형 평가를 위해 전체 데이터를 훈련용 데이터와 검증용 데이터로 나누었고, 훈련용 데이터에서 설정된 모형을 검증용 데이터에 적용하여 정확도를 비교하였다. 그 결과 CART가 최적 모형으로 선정되었으며 CART의 의사결정나무를 통하여 우울감 인지 여부, 현재 흡연여부, 스트레스 인지 여부 순으로 호흡기질환에 영향을 주는 것으로 나타났다. 그리고 호흡기질환의 주요인들에 대한 오즈비를 구하여 개별적인 영향력에 대해서도 밝혔다. Data mining is to clarify pattern or correlation of mass data of complicated structure and to predict the diverse outcomes. This technique is used in the fields of finance, telecommunication, circulation, medicine and so on. In this paper, we selected risk factors of respiratory diseases in the field of medicine. The data we used was divided into respiratory diseases group and health group from the Gyeongsangbuk-do database of Community Health Survey conducted in 2012. In order to select major risk factors, we applied data mining techniques such as neural network, logistic regression, Bayesian network, C5.0 and CART. We divided total data into training and testing data, and applied model which was designed by training data to testing data. By the comparison of prediction accuracy, CART was identified as best model. Depression, smoking and stress were proved as the major risk factors of respiratory disease.

      • KCI등재

        웹기반 임상데이터 관리 시스템 구축을 위한 프로그램 개발

        신임희,김달호,김상경,손기철,박전우,곽상규,Shin, Im-Hee,Kim, Dal-Ho,Kim, Sang-Gyung,Sohn, Ki-Cheul,Park, Chun-Woo,Kwak, Sang-Gyu 한국데이터정보과학회 2012 한국데이터정보과학회지 Vol.23 No.1

        컴퓨터의 발달로 인해 여러 가지 현상들이 수치화되어 데이터로 수집되고 있다. 특히 많은 양의 데이터가 각 분야별로 수집되고 있는데 이는 데이터를 기초로 한 분석과 해석을 통하여 의사 결정의 뒷받침이 되는 정보를 얻기 위해서이다. 데이터의 중요성이 부각되면서 데이터의 관리가 관심사가 되었다. 많은 연구자들이 공유할 수 있도록 서버에 데이터베이스를 구축하고 이를 웹 브라우저를 통하여 조회 및 확인하는 시스템을 구축하는 것이 필요하다. 본 연구에서는 연구자가 가장 많이 사용하는 엑셀 파일을 서버 데이터베이스에 업로드 하였고, 웹기반의 데이터베이스와 연동하여 연구자가 업로드한 데이터를 조회 및 확인할 수 있는 웹기반 프로그램을 개발하였다. 웹을 기반으로 데이터를 업로드 할 DB로 오라클을 사용하였으며 데이터베이스를 조회하기 위하여 웹프로그래밍 언어인 html, JAVA, JSP 등을 사용하여 웹기반 임상데이터 관리 시스템 구축을 위한 프로그램을 개발하였다. Various phenomenon can be expressed numerically and collected as a data due to rapid development of the computer. In particular large set of data is collected in various fields. We can obtain the information for final decision based on analysis and interpretation of the data. The issue is the management of the data as well as the importance of the data. So a system which stores the data in server and prints out the data to web browser is demanded. We uploaded the file of Excel form to server database and developed a web based program which can show the uploaded data through web based database. We used the Oracle DB for uploading and web programming language such as html, JAVA, JSP for querying the data. Finally, we developed a program for web based clinical data management system construction.

      • KCI등재

        자연재해 분석을 위한 빅데이터 마이닝 기술

        김영민,황미녕,김태홍,정창후,정도헌,Kim, Young-Min,Hwang, Mi-Nyeong,Kim, Taehong,Jeong, Chang-Hoo,Jeong, Do-Heon 한국데이터정보과학회 2015 한국데이터정보과학회지 Vol.26 No.5

        Big data analysis for disaster have been recently started especially to text data such as social media. Social data usually supports for the final two stages of disaster management, which consists of four stages: prevention, preparation, response and recovery. Otherwise, big data analysis for meteorologic data can contribute to the prevention and preparation. This motivated us to review big data technologies dealing with non-text data rather than text in natural disaster area. To this end, we first explain the main keywords, big data, data mining and machine learning in sec. 2. Then we introduce the state-of-the-art machine learning techniques in meteorology-related field sec. 3. We show how the traditional machine learning techniques have been adapted for climatic data by taking into account the domain specificity. The application of these techniques in natural disaster response are then introduced (sec. 4), and we finally conclude with several future research directions. 자연재해 빅데이터 분석은 현재 소셜 미디어 데이터 등 텍스트 데이터를 중심으로 시작되고 있으며 이는 재난관리의 네 단계인 예방, 대비, 대응, 복구에서 마지막 두 단계에 주로 해당된다. 반면 기상 데이터 자체에 대한 빅데이터 분석은 사전 관리에 해당하는 예방, 대비 단계에 활용될 수 있어 이와 관련한 연구 사례에 대한 체계적인 정리가 필요하다. 본 논문은 리뷰 논문으로서, 자연재해 영역에서 텍스트 데이터 외의 빅데이터를 다루는 분석 기술들에 대해 소개한다. 이를 위해 기상 관련 분야에서 사용되고 있는 데이터 마이닝 및 기계 학습 기술들을 살피고 각 기상 데이터의 특성에 맞춰 기존의 기술들이 어떻게 변형되는 지 밝힌다. 우선 2절에서 빅데이터, 데이터 마이닝, 기계 학습에 대한 기본 개념을 설명하고 3절에서 데이터 마이닝 및 기계 학습 기술의 실제 적용 사례를 상세히 정리한다. 4절에서는 자연재해 대응에 이러한 기술들이 직접 활용되는 예를 소개하고 마지막에 결론으로 마무리한다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼