RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A novel epoxypropoxy flavonoid derivative and topoisomerase II inhibitor, MHY336, induces apoptosis in prostate cancer cells

        Patra, Nabanita,De, Umasankar,Kang, Jin-Ah,Kim, Ji Mim,Ahn, Mee Young,Lee, Jaewon,Jung, Jee H.,Chung, Hae Young,Moon, Hyung Ryong,Kim, Hyung Sik Elsevier 2011 european journal of pharmacology Vol.658 No.2

        <P><B>Abstract</B></P><P>Here, we reported the synthesis of a novel topoisomerase II inhibitor, MHY336, which that has strong topoisomerase-mediated anticancer activity but fewer side effects than other topoisomerase II inhibitors. The catalytic activity of MHY336 on the topoisomerase II enzyme was the same as that of the etoposide. In a cell-free system, MHY336 exhibited a potent activity on scavenging of reactive oxygen species against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative stress. An <I>in vitro</I> cell-based assay demonstrated that MHY336 significantly inhibited the proliferation of three prostate cancer cell lines, LNCaP, PC-3, and DU145 cells. Notably, the cytotoxicity of MHY336 was more potent in LNCaP cells (IC<SUB>50</SUB>=1.39μM) than in DU145 (IC<SUB>50</SUB>=2.94μM) and PC3 cells (IC<SUB>50</SUB>=3.72μM). Furthermore, MHY336 treatment induced similar levels of cytotoxicity compared to doxorubicin treatment (IC<SUB>50</SUB>=1.55μM) in LNCap cells. Also, MHY336 significantly down-regulated topoisomerase II alpha expression and up-regulated p53 expression in LNCaP cells (wild-type p53), whereas it up-regulated the topoisomerase II alpha protein in both DU145 and PC3 cells (p53 mutated or deleted). MHY336 induced G2/M or S phase arrest in LNCaP cells through a well-documented topoisomerase II-dependent mechanism. Further studies using Annexin V-FITC binding assay, DAPI staining, and Western blot analyses illustrated that MHY336 markedly induced apoptotic cell death via the mitochondria-mediated intrinsic pathway in LNCaP cells. These results suggest that MHY336 is an attractive chemotherapeutic agent because of its topoisomerase II-mediated anti-tumour activity in human prostate cancer.</P>

      • SCIESCOPUSKCI등재

        A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

        De, Umasankar,Kundu, Soma,Patra, Nabanita,Ahn, Mee Young,Ahn, Ji Hae,Son, Ji Yeon,Yoon, Jung Hyun,Moon, Hyung Ryoung,Lee, Byung Mu,Kim, Hyung Sik The Korean Society of Applied Pharmacology 2015 Biomolecules & Therapeutics(구 응용약물학회지) Vol.23 No.5

        Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

      • SCIESCOPUSKCI등재

        A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

        ( Umasankar De ),( Soma Kundu ),( Nabanita Patra ),( Mee Young Ahn ),( Ji Hae Ahn ),( Ji Yeon Son ),( Jung Hyun Yoon ),( Hyung Ryoung Moon ),( Byung Mu Lee ),( Hyung Sik Kim ) 한국응용약물학회 2015 Biomolecules & Therapeutics(구 응용약물학회지) Vol.23 No.5

        Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP (IC50=0.67 μM) than in DU145 cells (IC50=1.10 μM) and PC3 cells (IC50=5.60 μM) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by downregulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

      • Functional role of phospholipase D (PLD) in di(2-ethylhexyl) phthalate-induced hepatotoxicity in Sprague-Dawley rats.

        Kim, Na Young,Kim, Tae Hyung,Lee, Ena,Patra, Nabanita,Lee, Jaewon,Shin, Mi Ok,Kwack, Seung Jun,Park, Kui Lea,Han, Soon Young,Kang, Tae Seok,Kim, Seung Hee,Lee, Byung Mu,Kim, Hyung Sik Taylor Francis 2010 Journal of toxicology and environmental health. Pa Vol.73 No.21

        <P>Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidyl choline (PC) to generate phosphatidic acid (PA) and choline. PLD is believed to play an important role in cell proliferation, survival signaling, cell transformation, and tumor progression. However, it remains to be determined whether enhanced expression of PLD in liver is sufficient to induce hepatotoxicity. The aim of this study was to investigate the possible role of PLD in di(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in Sprague-Dawley rats. The phthalate, DEHP (500 mg/kg/d), was administered orally, daily to prepubertal rats (4 wk of age, weighing approximately 70-90 g) for 1, 7, or 28 d. In this study, protein expression levels of PLD1/2, peroxisome proliferator-activated receptor (PPAR), and cytochrome P-450 (CYP) were determined by Western blot analysis using specific antibodies. Liver weight was significantly increased in the DEHP treatment groups. Immunohistochemical analysis demonstrated that DEHP produced strong staining of proliferating cell nuclear antigen (PCNA) at 28 d of exposure, suggestive of hepatocyte proliferation. A significant rise in PLD1/2 expression was observed in liver of DEHP-exposed rats after 7 d. Further, PPAR관, constitutive androstane receptor (CAR), pregnane X receptor (PXR), and CYP2B1 protein expression levels were markedly elevated in DEHP-treated groups. Our results suggest that DEHP significantly enhanced the expression of PLD, which may be correlated with PPAR관-induced hepatotoxicity through a complex interaction with nuclear receptors including CAR and PXR.</P>

      • SCOPUSKCI등재

        Comparison of the Short Term Toxicity of Phthalate Diesters and Monoesters in Sprague-Dawley Male Rats

        Kwack, Seung-Jun,Han, Eun-Young,Park, Jae-Seok,Bae, Jung-Yun,Ahn, Il-Young,Lim, Seong-Kwang,Kim, Dong-Hyun,Jang, Dong-Eun,Choi, Lan,Lim, Hyun-Jung,Kim, Tae-Hyung,Patra, Nabanita,Park, Kui-Lea,Kim, Hyu Korean Society of ToxicologyKorea Environmental Mu 2010 Toxicological Research Vol.27 No.1

        This study was carried out to investigate the short term toxicity of nine phthalate diesters including di-2(ethylhexyl) phthalate (DEHP), di(n-butyl) phthalate (DBP), di-n-octyl phthalate (DnOP), diethyl phthalate (DEP), butylbenzyl phthalate (BBP), dimethyl phthalate (DMP), di-isodecyl phthalate (DIDP), diundecyl phthalate (DUP), and di-isononyl phthalate (DINP) and five phthalate monoesters including mono- (2-ethylhexyl) phthalate (MEHP), monobutyl phthalate (MBuP), monobenzyl phthalate (MBeP), monoethyl phthalate (MEP), monomethyl phthalate (MMP) and phthalic acid (PA) in Sprague-Dawley male rats. Animals were administered 250 mg/kg/day (monoesters and PA) or 500 mg/kg/day (diesters) of phthalate for two weeks. All animals were examined for body and organ weights, blood hematology, serum biochemistry, and urine analysis. The body weight gain was significantly lower in rats treated with BBP, DBP, DINP, MEHP, MBuP, and PA than that of control. Liver weights were significantly increased in the DEHP, DBP, DnOP, DIDP, and MEHP groups as compared to the control group. Testes weights were significantly decreased only in the DEHP-, DnOP-, and DIDP-treated groups as compared to the control. Significant differences in hematological changes were not observed in any treatment groups. Significant increases in blood glucose levels were observed in the DEHP, MEHP, and MBeP groups. Aspartate aminotransferase (AST) levels were significantly increased in the DBP, DUP, DINP, MBuP, and MBeP groups, whereas alanine aminotransferase (ALT) levels were significantly increased only in the DEHP and MEHP groups. Serum ALP levels were significantly higher in phthalate diester (500 mg/kg/day)-treated rats as compared to control. However, the total cholesterol level was significantly reduced in the DEHP- and DIDP-treated groups, whereas serum triglyceride (TG) levels were higher in the DINP-, MEHP-, and MBuP-treated groups. These results suggest that short term toxicity of phthalate monoesters produces adverse effects as similar to phthalate diesters in Sprague-Dawley rats.

      • KCI등재

        Comparison of the Short Term Toxicity of Phthalate Diesters and Monoesters in Sprague-Dawley Male Rats

        Seung Jun Kwack,Eun Young Han,Jae Seok Park,Jung Yun Bae,Il Young Ahn,Seong Kwang Lim,Dong Hyun Kim,Dong Eun Jang,Lan Choi,Hyun Jung Lim,Tae Hyung Kim,Nabanita Patra,Kui Lea Park,Hyung Sik Kim,Byung M 한국독성학회 2010 Toxicological Research Vol.26 No.1

        This study was carried out to investigate the short term toxicity of nine phthalate diesters including di-2(ethylhexyl) phthalate (DEHP), di(n-butyl) phthalate (DBP), di-n-octyl phthalate (DnOP), diethyl phthalate (DEP), butylbenzyl phthalate (BBP), dimethyl phthalate (DMP), di-isodecyl phthalate (DIDP), diundecyl phthalate (DUP), and di-isononyl phthalate (DINP) and five phthalate monoesters including mono-(2-ethylhexyl) phthalate (MEHP), monobutyl phthalate (MBuP), monobenzyl phthalate (MBeP), monoethyl phthalate (MEP), monomethyl phthalate (MMP) and phthalic acid (PA) in Sprague-Dawley male rats. Animals were administered 250 ㎎/㎏/day (monoesters and PA) or 500 ㎎/㎏/day (diesters) of phthalate for two weeks. All animals were examined for body and organ weights, blood hematology, serum biochemistry, and urine analysis. The body weight gain was significantly lower in rats treated with BBP, DBP, DINP, MEHP, MBuP, and PA than that of control. Liver weights were significantly increased in the DEHP, DBP, DnOP, DIDP, and MEHP groups as compared to the control group. Testes weights were significantly decreased only in the DEHP-, DnOP-, and DIDP-treated groups as compared to the control. Significant differences in hematological changes were not observed in any treatment groups. Significant increases in blood glucose levels were observed in the DEHP, MEHP, and MBeP groups. Aspartate aminotransferase (AST) levels were significantly increased in the DBP, DUP, DINP, MBuP, and MBeP groups, whereas alanine aminotransferase (ALT) levels were significantly increased only in the DEHP and MEHP groups. Serum ALP levels were significantly higher in phthalate diester (500 ㎎/㎏/day)-treated rats as compared to control. However, the total cholesterol level was significantly reduced in the DEHP- and DIDP-treated groups, whereas serum triglyceride (TG) levels were higher in the DINP-, MEHP-, and MBuP-treated groups. These results suggest that short term toxicity of phthalate monoesters produces adverse effects as similar to phthalate diesters in Sprague-Dawley rats.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼