RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Characteristics of Copper Nitride Nanolayer Used in 3D Cu Bonding Interconnects

        Haesung Park,Hankyeol Seo,Sarah Eunkyung Kim 대한금속·재료학회 2021 ELECTRONIC MATERIALS LETTERS Vol.17 No.5

        Cu–Cu bonding is a key process in fine pitch Cu interconnect in 3-dimenssional Si integration. Despite the excellent electricalproperty and pattern ability of Cu material, the Cu–Cu bonding process is affected by the high bonding temperature and easyoxidation. Thus, the ability to protect the copper surface in a reactive air environment is very important in Cu–Cu bonding,especially for die–to–wafer Cu bonding applications. We studied Cu–Cu bonding using a copper nitride nanolayer as anantioxidant passivation layer and investigated the stability of the copper nitride nanolayer over 7 days and its decompositioncapability across temperatures of up to 400 °C. We found that the copper nitride (Cu4N) nanolayer formed by two-step Ar/N2 plasma treatment protected the copper surface from further oxidation in the air, and that the energy required for thermaldecomposition of the copper nitride nanolayer in this study was about 29.6 kJ/mol. It can be seen that the bonding temperatureof Cu–Cu bonding can be sufficiently lowered by using a low–temperature decomposition property of copper nitride.

      • KCI등재후보

        Cu-SiO<sub>2</sub> 하이브리드 본딩

        서한결,박해성,김사라은경,Seo, Hankyeol,Park, Haesung,Kim, Sarah Eunkyung 한국마이크로전자및패키징학회 2020 마이크로전자 및 패키징학회지 Vol.27 No.1

        As an interconnect scaling faces a technical bottleneck, the device stacking technologies have been developed for miniaturization, low cost and high performance. To manufacture a stacked device structure, a vertical interconnect becomes a key process to enable signal and power integrities. Most bonding materials used in stacked structures are currently solder or Cu pillar with Sn cap, but copper is emerging as the most important bonding material due to fine-pitch patternability and high electrical performance. Copper bonding has advantages such as CMOS compatible process, high electrical and thermal conductivities, and excellent mechanical integrity, but it has major disadvantages of high bonding temperature, quick oxidation, and planarization requirement. There are many copper bonding processes such as dielectric bonding, copper direct bonding, copper-oxide hybrid bonding, copper-polymer hybrid bonding, etc.. As copper bonding evolves, copper-oxide hybrid bonding is considered as the most promising bonding process for vertically stacked device structure. This paper reviews current research trends of copper bonding focusing on the key process of Cu-SiO<sub>2</sub> hybrid bonding.

      • KCI등재

        구리 질화막을 이용한 구리 접합 구조의 접합강도 연구

        서한결,박해성,김가희,박영배,김사라은경,Seo, Hankyeol,Park, Haesung,Kim, Gahui,Park, Young-Bae,Kim, Sarah Eunkyung 한국마이크로전자및패키징학회 2020 마이크로전자 및 패키징학회지 Vol.27 No.3

        최근 참단 반도체 패키징 기술은 고성능 SIP(system in packaging) 구조로 발전해 가고 있고, 이를 실현시키기 위해서 구리 대 구리 접합은 가장 핵심적인 기술로 대두되고 있다. 구리 대 구리 접합 기술은 아직 구리의 산화 특성과 고온 및 고압력 공정 조건, 등 해결해야 할 문제점들이 남아 있다. 본 연구에서는 아르곤과 질소를 이용한 2단계 플라즈마 공정을 이용한 저온 구리 접합 공정의 접합 계면 품질을 정량적 접합 강도 측정을 통하여 확인하였다. 2단계 플라즈마 공정은 구리 표면에 구리 질화막을 형성하여 저온 구리 접합을 가능하게 한다. 구리 접합 후 접합 강도 측정은 4점 굽힘 시험법과 전단 시험법으로 수행하였으며, 평균 접합 전단 강도는 30.40 MPa로 우수한 접합 강도를 보였다. The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.

      • KCI등재후보

        Ar/N<sub>2</sub> 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석

        최성훈,김가희,서한결,김사라은경,박영배,Choi, Seonghun,Kim, Gahui,Seo, Hankyeol,Kim, Sarah Eunkyung,Park, Young-Bae 한국마이크로전자및패키징학회 2021 마이크로전자 및 패키징학회지 Vol.28 No.2

        3 차원 패키징을 위한 저온 Cu-Cu직접 접합부의 계면접착에너지를 향상시키기 위해 Cu박막 표면에 대한 Ar/N<sub>2</sub> 2단계 플라즈마 처리 전, 후 Cu표면 및 접합계면에 대한 화학결합을 X-선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 정량화한 결과, 2단계 플라즈마 처리로 인해 Cu표면에 Cu<sub>4</sub>N이 형성되어 Cu산화를 효과적으로 억제하는 것을 확인하였다. 2단계 플라즈마 처리하지 않은 Cu-Cu시편은 표면 산화막의 영향으로 접합이 제대로 되지 않았으나 2단계 플라즈마 처리한 시편은 효과적인 표면 산화방지효과로 인해 양호한 Cu-Cu접합을 형성하였다. Cu-Cu직접접합 계면의 정량적 계면접착에너지를 double cantilever beam 시험방법 및 4점 굽힘(4-point bending, 4-PB) 시험방법을 통해 비교한 결과, 각각 1.63±0.24, 2.33±0.67 J/m<sup>2</sup>으로 4-PB 시험의 계면접착에너지가 더 크게 측정되었다. 이는 계면파괴역학의 위상각(phase angle)에 따른 계면접착에너지 증가 거동으로 설명할 수 있는데 즉, 4-PB의 계면균열선단 전단응력성분 증가로 인한 계면거칠기의 효과에 기인한 것으로 판단된다. The effect of Ar/N<sub>2</sub> two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N<sub>2</sub> 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N<sub>2</sub> 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m<sup>2</sup> and 2.33±0.67 J/m<sup>2</sup>, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼