RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Micro-computed tomography in preventive and restorative dental research: A review

        Ghavami-Lahiji, Mehrsima,Davalloo, Reza Tayefeh,Tajziehchi, Gelareh,Shams, Paria Korean Academy of Oral and Maxillofacial Radiology 2021 Imaging Science in Dentistry Vol.51 No.-

        Purpose: The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods: An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results: Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion: The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.

      • KCI등재

        Micro-computed tomography in preventive and restorative dental research: A review

        Ghavami-Lahiji Mehrsima,Davalloo Reza Tayefeh,Tajziehchi Gelareh,Shams Paria 대한영상치의학회 2021 Imaging Science in Dentistry Vol.51 No.4

        Purpose: The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods: An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results: Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion: The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.

      • KCI등재

        The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite

        Ghavami-Lahiji, Mehrsima,Firouzmanesh, Melika,Bagheri, Hossein,Jafarzadeh Kashi, Tahereh S.,Razazpour, Fateme,Behroozibakhsh, Marjan The Korean Academy of Conservative Dentistry 2018 Restorative Dentistry & Endodontics Vol.43 No.2

        Objective: The purpose of this study was to investigate the degree of conversion (DC) and mechanical properties of a microhybrid Filtek Z250 (3M ESPE) resin composite after aging. Method: The specimens were fabricated using circular molds to investigate Vickers microhardness (Vickers hardness number [VHN]) and DC, and were prepared according to ISO 4049 for flexural strength testing. The initial DC (%) of discs was recorded using attenuated total reflectance-Fourier transforming infrared spectroscopy. The initial VHN of the specimens was measured using a microhardness tester under a load of 300 g for 15 seconds and the flexural strength test was carried out with a universal testing machine (crosshead speed, 0.5 mm/min). The specimens were then subjected to thermocycling in $5^{\circ}C$ and $55^{\circ}C$ water baths. Properties were assessed after 1,000-10,000 cycles of thermocycling. The surfaces were evaluated using scanning electron microscopy (SEM). Data were analyzed using 1-way analysis of variance followed by the Tukey honest significant difference post hoc test. Results: Statistical analysis showed that DC tended to increase up to 4,000 cycles, with no significant changes. VHN and flexural strength values significantly decreased upon thermal cycling when compared to baseline (p < 0.05). However, there was no significant difference between initial and post-thermocycling VHN results at 1,000 cycles. SEM images after aging showed deteriorative changes in the resin composite surfaces. Conclusions: The Z250 microhybrid resin composite showed reduced surface microhardness and flexural strength and increased DC after thermocycling.

      • KCI등재

        The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite

        Mehrsima Ghavami-Lahiji 대한치과보존학회 2018 Restorative Dentistry & Endodontics Vol.43 No.2

        Objective The purpose of this study was to investigate the degree of conversion (DC) and mechanical properties of a microhybrid Filtek Z250 (3M ESPE) resin composite after aging. Method The specimens were fabricated using circular molds to investigate Vickers microhardness (Vickers hardness number [VHN]) and DC, and were prepared according to ISO 4049 for flexural strength testing. The initial DC (%) of discs was recorded using attenuated total reflectance-Fourier transforming infrared spectroscopy. The initial VHN of the specimens was measured using a microhardness tester under a load of 300 g for 15 seconds and the flexural strength test was carried out with a universal testing machine (crosshead speed, 0.5 mm/min). The specimens were then subjected to thermocycling in 5°C and 55°C water baths. Properties were assessed after 1,000–10,000 cycles of thermocycling. The surfaces were evaluated using scanning electron microscopy (SEM). Data were analyzed using 1-way analysis of variance followed by the Tukey honest significant difference post hoc test. Results Statistical analysis showed that DC tended to increase up to 4,000 cycles, with no significant changes. VHN and flexural strength values significantly decreased upon thermal cycling when compared to baseline (p < 0.05). However, there was no significant difference between initial and post-thermocycling VHN results at 1,000 cycles. SEM images after aging showed deteriorative changes in the resin composite surfaces. Conclusions The Z250 microhybrid resin composite showed reduced surface microhardness and flexural strength and increased DC after thermocycling.

      • SCISCIESCOPUS

        Electrospun zwitterionic nanofibers with in situ decelerated epithelialization property for non-adherent and easy removable wound dressing application

        Unnithan, Afeesh Rajan,Ghavami Nejad, Amin,Sasikala, Arathyram Ramachandra Kurup,Thomas, Reju George,Jeong, Yong Yeon,Murugesan, Priya,Nasseri, Saeed,Wu, Dongmei,Park, Chan Hee,Kim, Cheol Sang Elsevier 2016 Chemical Engineering Journal Vol.287 No.-

        <P><B>Abstract</B></P> <P>Wound care management is a serious issue among the medical practitioners due to its varying complexity and various materials were tested for fast relief and easy removal. In this regard zwitterionic polymer based wound dressing membranes are the key point of attraction. Here we prepared a novel zwitterionic poly (carboxybetaine-co-methyl methacrylate) (CBMA) copolymer based nanomembranes using the electrospinning technique for the wound dressing application. The study takes advantage of the outstanding chemical properties of zwitterionic CBMA and the morphological efficiency of nanomembranes. The cell attachment studies proved the cell inert nature of thus prepared membranes. Such non cell adherent wound dressing membranes can be applied as the easy removable, no-pain wound dressing bandages. Our results clearly showed that the excellent blood-inert nature can be achieved by the CBMA nanofiber membranes. Therefore, there will be less chance of attaching blood clot with the wound dressing membrane and is extremely significant for the care of patients with large areas of chronic wounds. Additionally the in vivo results showed the formation of new tissues within two weeks, evidence of a complete wound healing material. So our CBMA membrane can be successfully used as a perfect wound dressing material with minimum cosmetic scar.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Non cell adherent wound dressing membranes. </LI> <LI> Easy removable, no-pain wound dressing bandages. </LI> <LI> Blood inert wound dressing membrane, suitable for large areas of chronic wounds. </LI> <LI> Resist microbial biofilm formation and hence provides minimum chance of infection. </LI> <LI> Minimum cosmetic scar due to less cell adsorption on wound dressing membrane. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Effect of active metal loading on catalyst structure and performance in room temperature oxidation of acetone by ozone

        M. Aghbolaghy,M. Ghavami,J. Soltan,N. Chen 한국공업화학회 2019 Journal of Industrial and Engineering Chemistry Vol.77 No.-

        Room temperature ozonation of gaseous acetone was performed using CoOx/g-alumina catalyst withdifferent cobalt loadings. Turnover frequency of acetone removal increased by decreasing metal loadingof the catalyst. A comprehensive catalyst characterization showed that variation in cobalt loading alteredthe local environment of cobalt. Enhanced performance of the catalysts with lower cobalt loadings wereattributed to (a) increase in cobalt dispersion from 4% in Co10% to 16% in Co2.5% (b) decrease in oxidationstate of cobalt from Co(II,III) to Co(II), which resulted in improved electron transferring ability and ozoneutilization.

      • SCOPUSKCI등재

        Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

        Pourjavadi, Ali,Soleyman, Rouhollah,Bardajee, Ghasem Rezanejade,Ghavami, Somayeh Korean Chemical Society 2009 Bulletin of the Korean Chemical Society Vol.30 No.11

        The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

      • KCI등재

        Novel Superabsorbent Hydrogel Based on Natural Hybrid Backbone: Optimized Synthesis and its Swelling Behavior

        Ali Pourjavadi,Rouhollah Soleyman,Ghasem Rezanejade Bardajee,Somayeh Ghavami 대한화학회 2009 Bulletin of the Korean Chemical Society Vol.30 No.11

        The synthesis of a novel superabsorbent hydrogel with natural hybrid backbone via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) under classic thermal conditions is described. The Taguchi method as a strong experimental design tool was used for synthesis optimization. A series of hydrogels were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of optimum hydrogel was measured in various solutions with pH values ranging from 1 to 13. In addition, swelling kinetics, swelling in various organic solvents, various salt solutions and On–Off switching behavior were investigated. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetrical analysis (TGA). Surface morphology of the synthesized hydrogels was assessed by scanning electron microscope (SEM).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼