RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
      • 무료
      • 기관 내 무료
      • 유료
      • BERT를 이용한 한국어 특허상담 기계독해

        민재옥 ( Jae-ok Min ),박진우 ( Jin-woo Park ),조유정 ( Yu-jeong Jo ),이봉건 ( Bong-gun Lee ),황광수 ( Kwang-su Hwang ),박소희 ( So-hee Park ) 한국정보처리학회 2019 한국정보처리학회 학술대회논문집 Vol.26 No.2

        기계독해는(Machine reading comprehension) 사용자 질의에 대한 답변이 될 수 있는 내용을 기계가 문서를 이해하여 추론하는 것을 말하며 기계독해를 이용해서 챗봇과 같은 자동상담 서비스에 활용할 수 있다. 최근 자연어처리 분야에서 많은 성능 향상을 보이고 있는 BERT모델을 기계독해 분야에 적용 할 수 있다. 본 논문에서는 특허상담 분야에서 기계독해 task 성능 향상을 위해 특허상담 코퍼스를 사용하여 사전학습(Pre-training)한 BERT모델과 특허상담 기계학습에 적합한 언어처리 기법을 추가하여 성능을 올릴 수 있는 방안을 제안하였고, 본 논문에서 제안한 방법을 사용하여 특허상담 질의에 대한 답변 결정에서 성능이 향상됨을 보였다.

      • KCI등재

        연기금의 주식투자 장기성과 분석에 대한 연구

        민재훈(Jae-Hoon Min) 한국산업경제학회 2013 산업경제연구 Vol.26 No.5

        본 연구는 국내 유가증권시장에서 상장된 주식을 대상으로 연기금의 주식 선택 능력(stock selection ability)과 이에 따른 장기적인 투자 성과에 대해서 조사해보고자 하였다. 연기금 투자와 관련된 여러 가지 제약들로 인해서 본 연구는 연기금의 과거 거래 정보의 유용성에 의문을 제기하고 연기금의 과거 매매 정보를 이용한 모방 투자 전략의 수익성을 검증해 보고자 하였다. 본 연구는 또한 연기금과 투신사의 과거 매매 정보를 이용한 모방 전략을 비교해 보고자 하였다. 이는 두 기관투자자의 주식 투자 목표가 기본적으로 다르다는 전제하에서 투신사는 단기성과에 집착할 수밖에 없는 주식 운용구조를 가진 반면 연기금의 경우 보다 장기적인 전략적 목표를 가지고 주식 투자에 임하고 이에 따른 종목 선택을 한다고 가정하였다. 따라서 단기적으로 투신사의 운용 성과가 연기금보다 나을지라도 장기적으로는 연기금의 투자 전략을 모방함으로써 보다 우월한 장기적인 투자 성과를 가져올 수 있다고 가정하였다. 그러나 실증분석의 결과는 두 가지 가설을 모두 지지하지 않았다. 연기금과 투신사의 과거 주식 매매 자료를 이용하여 두 기관투자자가 주로 사는 종목을 매수하고 많이 파는 종목을 공매도하는 모방 전략을 따라한 결과 이들 두 기관 투자자를 추종하는 모방 전략은 헤지 포트폴리오 구성 후 3년 동안 양(+)의 초과 수익을 올리는 것으로 나타났다. 또한 투신사의 투자 패턴을 모방하는 경우가 연기금의 과거 매매 행태를 따라하는 경우에 비해서 포트폴리오 구성 후 1년부터 3년까지의 모든 기간에 있어서 높은 수익성을 보여서 연기금이 투신사와 대비해 장기적인 투자 성과 측면에서 비교 우위를 가진다는 가설 역시 지지될 수 없었다. This study attempts to investigate the stock selection ability of pension funds and their long-run performances in the Korean market. This study hypothesizes that mimicking the past trading behaviors of pension funds does not produce excess return due to lack of information in pension funds trading. This study also compares the long-run performances of pension funds with those of investment trusts and mutual funds because the investment objective of pension funds is fundamentally different from those of investment trusts and mutual funds. This study tries to test whether investment strategy of buying those stocks pension funds bought most last year and simultaneously selling short those stocks pension funds sold most produces superior performance in the long-run relative to the same strategy employing investment trusts and mutual funds’ past trading behaviors. The empirical test can not support the hypothesis because the zero investment hedge portfolio mimicking past trading behaviors of pension funds produces significantly positive risk adjusted returns up to three years after portfolio formation. This study also fails to support the hypothesis that the long-run performances of zero investment hedge portfolio mimicking pension funds trading result in better performance compared to those mimicking investment trusts and mutual pension funds trading. Over the entire post-portfolio formation periods from one year through three years, the hedge portfolio mimicking investment trust and mutual funds trading produces superior performance to those mimicking pension funds trading.

      • KCI등재
      • 스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구

        민재기 ( Jae-ki Min ),이동훈 ( Donghoon Lee ) 한국농업기계학회 2017 한국농업기계학회 학술발표논문집 Vol.22 No.1

        구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear GradientDescent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다.

      • 스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석

        민재기 ( Jae-ki Min ),이동훈 ( Donghoon Lee ) 한국농업기계학회 2017 한국농업기계학회 학술발표논문집 Vol.22 No.1

        스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, 12800 × 12800 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

      • 스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석

        민재기 ( Jae-ki Min ),이동훈 ( Donghoon Lee ) 한국농업기계학회 2017 한국농업기계학회 학술발표논문집 Vol.22 No.1

        자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. 50 m × 100 m의 단면적인 연동 딸기 온실을 대상으로 3 × 3 × 3의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of O = O<sup>3</sup>)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 PascalTitan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 SamsungExynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬(100 × 200 × 5 × 4)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

      • KCI등재

        Effects of a Portable Computerized Cognitive Training System on the Visual-perceptual Function of Stroke Patients with Mild Cognitive Impairment : A Pilot Study

        Min-Jae Jeon(전민재),Jong-Hoon Moon(문종훈) 한국엔터테인먼트산업학회 2019 한국엔터테인먼트산업학회논문지 Vol.13 No.8

        This pilot study investigated the effects of a portable computerized cognitive training system on the visual-perceptual function of stroke patients with mild cognitive impairment. Subjects were twelve stroke patients with mild cognitive impairment, who were assigned to an experimental group (n=6) or a control group (n=6). All subjects were trained in their respective groups for 30 min/day, five times a week, for four weeks. In each session, the experimental group received a portable computerized cognitive training program, and the control group received conventional cognitive training. The Motor-Free Visual Perception-3 (MVPT-3) was used to measure subjects’ visual-perceptual ability. The MVPT-3 total scores for both groups significantly improved after the intervention (p<.05). The total score on the MVPT-3 and the score on the visual short-term memory subcategory of the MVPT-3 significantly improved for the experimental group compared to the control group (p<.05). These findings suggest that the portable computerized cognitive training system might be effective to improve the visual-perceptual function of stroke patients with mild cognitive impairment.

      • 스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석

        민재기 ( Jae-ki Min ),이동훈 ( Donghoon Lee ) 한국농업기계학회 2017 한국농업기계학회 학술발표논문집 Vol.22 No.1

        스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼