RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings

        Masahiro Yamaguchi,Yoko Otani,Kenta Takeda,I. Wuled Lenggoro,Atsushi Ishida,Kenichi Yazaki,Kyotaro Noguchi,Hiroyuki Sase,Naoto Murao,Satoshi Nakaba,Kenichi Yamane,Katsushi Kuroda,Yuzou Sano,Ryo Funada 한국대기환경학회 2012 Asian Journal of Atmospheric Environment (AJAE) Vol.6 No.4

        To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32and 0.58 mg C m-2 total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour (gs), stomatal limitation of photosynthesis,response of gs to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii,L. kaempferi and C. japonica seedlings. To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32and 0.58 mg C m-2 total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour (gs), stomatal limitation of photosynthesis,response of gs to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii,L. kaempferi and C. japonica seedlings.

      • KCI등재후보

        Optical Method for Measuring Deposition Amount of Black Carbon Particles on Foliar Surface

        Masahiro Yamaguchi,Kenta Takeda,Yoko Otani,Naoto Murao,Hiroyuki Sase,I. Wuled Lenggoro,Kenichi Yazaki,Kyotaro Noguchi,Atsushi Ishida,Takeshi Izuta 한국대기환경학회 2012 Asian Journal of Atmospheric Environment (AJAE) Vol.6 No.4

        To perform quick measurements of black carbon (BC)particles deposited on foliar surfaces of forest tree species, we investigated an optical method for measuring the amount of BC extracted from foliar surfaces and collected on quartz fiber filters. The seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to submicron BC particles for one growing season (1June to 7 December 2009). At the end of the growing season, the leaves or needles of the seedlings were harvested and washed with deionized water followed by washing with chloroform to extract the BC particles deposited on the foliar surfaces. The extracted BC particles were collected on a quartz fiber filter. The absorption spectrum of the filters was measured by spectrophotometer with an integrating sphere. To obtain the relationship between the absorbance of the filter and the amount of BC particles on the filter,the amount of BC particles on the filter was determined as that of elemental carbon (EC) measured by a thermal optical method. At wavelengths below 450nm, the absorption spectrum of the filter showed absorption by biological substances, such as epicuticular wax, resulting in the low coefficient of determination (R2) in the relationship between the amount of EC on the filter (MEC, μg C cm-2 filter area) and the absorbance of the filter. The intercept of the regression line between MEC and the absorbance of the filter at 580 nm (A580) was closest to 0. There was a significant linear relationship between the A580 and MEC (R2=0.917, p⁄0.001), suggesting that the amount of BC particles collected on the filter can be predicted from the absorbance. This optical method might serve as a simple, fast and cost-effective technique for measuring the amount of BC on foliar surfaces. To perform quick measurements of black carbon (BC)particles deposited on foliar surfaces of forest tree species, we investigated an optical method for measuring the amount of BC extracted from foliar surfaces and collected on quartz fiber filters. The seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to submicron BC particles for one growing season (1June to 7 December 2009). At the end of the growing season, the leaves or needles of the seedlings were harvested and washed with deionized water followed by washing with chloroform to extract the BC particles deposited on the foliar surfaces. The extracted BC particles were collected on a quartz fiber filter. The absorption spectrum of the filters was measured by spectrophotometer with an integrating sphere. To obtain the relationship between the absorbance of the filter and the amount of BC particles on the filter,the amount of BC particles on the filter was determined as that of elemental carbon (EC) measured by a thermal optical method. At wavelengths below 450nm, the absorption spectrum of the filter showed absorption by biological substances, such as epicuticular wax, resulting in the low coefficient of determination (R2) in the relationship between the amount of EC on the filter (MEC, μg C cm-2 filter area) and the absorbance of the filter. The intercept of the regression line between MEC and the absorbance of the filter at 580 nm (A580) was closest to 0. There was a significant linear relationship between the A580 and MEC (R2=0.917, p⁄0.001), suggesting that the amount of BC particles collected on the filter can be predicted from the absorbance. This optical method might serve as a simple, fast and cost-effective technique for measuring the amount of BC on foliar surfaces.

      • SCOPUSKCI등재

        Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings

        Yamaguchi, Masahiro,Otani, Yoko,Takeda, Kenta,Lenggoro, I. Wuled,Ishida, Atsushi,Yazaki, Kenichi,Noguchi, Kyotaro,Sase, Hiroyuki,Murao, Naoto,Nakaba, Satoshi,Yamane, Kenichi,Kuroda, Katsushi,Sano, Yuz Korean Society for Atmospheric Environment 2012 Asian Journal of Atmospheric Environment (AJAE) Vol.6 No.4

        To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32 and 0.58 mg C $m^{-2}$ total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour ($g_s$), stomatal limitation of photosynthesis, response of $g_s$ to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings.

      • SCOPUSKCI등재

        Optical Method for Measuring Deposition Amount of Black Carbon Particles on Foliar Surface

        Yamaguchi, Masahiro,Takeda, Kenta,Otani, Yoko,Murao, Naoto,Sase, Hiroyuki,Lenggoro, I. Wuled,Yazaki, Kenichi,Noguchi, Kyotaro,Ishida, Atsushi,Izuta, Takeshi Korean Society for Atmospheric Environment 2012 Asian Journal of Atmospheric Environment (AJAE) Vol.6 No.4

        To perform quick measurements of black carbon (BC) particles deposited on foliar surfaces of forest tree species, we investigated an optical method for measuring the amount of BC extracted from foliar surfaces and collected on quartz fiber filters. The seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to submicron BC particles for one growing season (1 June to 7 December 2009). At the end of the growing season, the leaves or needles of the seedlings were harvested and washed with deionized water followed by washing with chloroform to extract the BC particles deposited on the foliar surfaces. The extracted BC particles were collected on a quartz fiber filter. The absorption spectrum of the filters was measured by spectrophotometer with an integrating sphere. To obtain the relationship between the absorbance of the filter and the amount of BC particles on the filter, the amount of BC particles on the filter was determined as that of elemental carbon (EC) measured by a thermal optical method. At wavelengths below 450 nm, the absorption spectrum of the filter showed absorption by biological substances, such as epicuticular wax, resulting in the low coefficient of determination ($R^2$) in the relationship between the amount of EC on the filter ($M_{EC}$, ${\mu}g\;C\;cm^{-2}$ filter area) and the absorbance of the filter. The intercept of the regression line between $M_{EC}$ and the absorbance of the filter at 580 nm ($A_{580}$) was closest to 0. There was a significant linear relationship between the $A_{580}$ and $M_{EC}$ ($R^2$=0.917, p<0.001), suggesting that the amount of BC particles collected on the filter can be predicted from the absorbance. This optical method might serve as a simple, fast and cost-effective technique for measuring the amount of BC on foliar surfaces.

      • Identification of the Part of Soccer Court from Video Signal by Neural Networks

        Kenji Ishida,Masahiro Tanaka 제어로봇시스템학회 2008 제어로봇시스템학회 국제학술대회 논문집 Vol.2008 No.10

        Recently, it is becoming a popular practice to use character information in broadcasting video programs. This is useful for handicapped people with ears. In some cases, the characters are typed by typists. In that respect, it should be an important technology to produce the abstracted character information from the video information. The abstracted information will be useful for the normal audience, CG representation of the program, and store the game abstract in databases. In this paper, we will deal with the video processing part to identify the part of the court.

      • Measurement of Droplet Size Distribution on Diesel Spray Core by Advanced Laser 2-Focus Velocimeter

        ( Hironobu Ueki ),( Masahiro Ishida ),( Daisaku Sakaguchi ) 한국액체미립화학회 2005 한국액체미립화학회 학술강연회 논문집 Vol.2005 No.-

        An advanced laser 2-focus velocimeter (L2F) was used for the local and instantaneous measurement of droplet size in the core region of diesel fuel spray. The measuring volume of the L2F consists of two foci, where the diameter of the focus is 2 μm and the distance between two foci is 36 μm. The droplet velocity is estimated by dividing the distance between two foci by the measured time-of-flight and the droplet size is estimated by multiplying the velocity by the measured time-of-scattering. Diesel fuel was injected into the atmosphere intermittently from a single-hole nozzle with a hole diameter of 0.2 mm. Measurement was conducted on four planes where the axial distance from the nozzle orifice were 10, 20, 30, and 40 mm. It is shown that the droplet size increases with needle valve opening and varies a little after the needle valve is opened fully. The droplet size becomes smaller to direction of injection. It is found that the droplet size distribution at each measuring position in the spray core region can be fitted to the Nukiyama-Tanasawa`s distribution in most injection period including the condition of transient needle valve opening.

      • Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose

        Nakamura, Akihiko,Watanabe, Hiroki,Ishida, Takuya,Uchihashi, Takayuki,Wada, Masahisa,Ando, Toshio,Igarashi, Kiyohiko,Samejima, Masahiro American Chemical Society 2014 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.136 No.12

        <P>Analysis of heterogeneous catalysis at an interface is difficult because of the variety of reaction sites and the difficulty of observing the reaction. Enzymatic hydrolysis of cellulose by cellulases is a typical heterogeneous reaction at a solid/liquid interface, and a key parameter of such reactions on polymeric substrates is the processivity, i.e., the number of catalytic cycles that can occur without detachment of the enzyme from the substrate. In this study, we evaluated the reactions of three closely related glycoside hydrolase family 7 cellobiohydrolases from filamentous fungi at the molecular level by means of high-speed atomic force microscopy to investigate the structure–function relationship of the cellobiohydrolases on crystalline cellulose. We found that high moving velocity of enzyme molecules on the surface is associated with a high dissociation rate constant from the substrate, which means weak interaction between enzyme and substrate. Moreover, higher values of processivity were associated with more loop regions covering the subsite cleft, which may imply higher binding affinity. Loop regions covering the subsites result in stronger interaction, which decreases the velocity but increases the processivity. These results indicate that there is a trade-off between processivity and hydrolytic velocity among processive cellulases.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2014/jacsat.2014.136.issue-12/ja4119994/production/images/medium/ja-2013-119994_0006.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja4119994'>ACS Electronic Supporting Info</A></P>

      • SCOPUSKCI등재

        Dosimetric advantages and clinical outcomes of simultaneous integrated boost intensity-modulated radiotherapy for anal squamous cell carcinoma

        Sakanaka, Katsuyuki,Itasaka, Satoshi,Ishida, Yuichi,Fujii, Kota,Horimatsu, Takahiro,Mizowaki, Takashi,Sakai, Yoshiharu,Hiraoka, Masahiro The Korean Society for Radiation Oncology 2017 Radiation Oncology Journal Vol.35 No.4

        Purpose: The purpose of this study was to explore the dosimetric difference between simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) and three-dimensional conformal radiotherapy (3DCRT), and the clinical outcomes of anal squamous cell carcinoma (ASCC) chemoradiotherapy featuring SIB-IMRT. Materials and Methods: This study included ten patients with ASCC who underwent chemoradiotherapy using SIB-IMRT with 5-fluorouracil and mitomycin C. SIB-IMRT delivered 54 Gy to each primary tumor plus metastatic lymph nodes and 45 Gy to regional lymph nodes, in 30 fractions. Four patients received additional boosts to the primary tumors and metastatic lymph nodes; the median total dose was 54 Gy (range, 54 to 60 Gy). We additionally created 3DCRT plans following the Radiation Therapy Oncology Group 9811 protocol to allow dosimetric comparisons with SIB-IMRT. Locoregional control, overall survival, and toxicity were calculated for the clinical outcome evaluation. Results: Compared to 3DCRT, SIB-IMRT significantly reduced doses to the external genitalia, bladder, and intestine, delivering the doses to target and elective nodal region. At a median follow-up time of 46 months, 3-year locoregional control and overall survival rates were 88.9% and 100%, respectively. Acute toxicities were treated conservatively. All patients completed radiotherapy with brief interruptions (range, 0 to 2 days). No patient experienced ${\geq}grade$ 3 late toxicity during the follow-up period. Conclusion: The dosimetric advantages of SIB-IMRT appeared to reduce the toxicity of chemoradiotherapy for ASCC achieving high locoregional control in the extended period.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼