RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Research of Resource Scheduling Strategy in Cloud Computing

        Ying Gao,Guang Yang,Yanglin Ma,Mu Lei,Jiajie Duan 보안공학연구지원센터 2015 International Journal of Grid and Distributed Comp Vol.8 No.3

        To solve the cloud computing resource scheduling problem in IaaS platform, a scheduling model based on ant colony algorithm was proposed. In this model, pheromone changes dynamically according to the best route searched by ants. This model automatically updates pheromones and guides ants to search the global best route. Experiment results show that the proposed model is of better ability in energy consumption in the IaaS cloud computing platform.

      • KCI등재

        Design and testing of CFRP sleeve for a high-speed permanent magnet synchronous motor with surface-mounted rotor

        Yong Zhou,Lei Tian,Sheng-Hua Gao,Jing-Wei Zhang,Lin-Ke Yang,Rui-Guang Xie 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.1

        A high-speed (HS) permanent magnet (PM) synchronous motor (HSPMSM) with a carbon fiber-reinforced plastic (CFRP) protective sleeve in the surface-mounted rotor was explored in this study. In view of retaining the PMs at HS operations, the high-strength CFRP sleeve was designed on the basis of a process that could be summarized as follows. First, a multi-physics analysis of the rotor was conducted. The requirements to the CFRP sleeve were obtained from electromagnetic analysis, loss analysis, heat flow coupling computational fluid dynamics analysis, structural analysis, and rotor dynamics analysis. Second, the CFRP sleeve was designed by theoretical analysis. From the results, the thickness values of the carbon fibers in the circumferential and helical directions were chosen to be 4 and 1 mm, respectively, while the helical angle of carbon fibers was chosen to be 70°. Then, a plateshaped CFRP product and a cylindrical CFRP product were fabricated to verify the strength and stiffness of the CFRP sleeve. The performance test results show that the hoop strength and elastic modulus and the axial strength and elastic modulus of the plate-shaped CFRP products at 20 °C are 1963 MPa @ 156 GPa and 550 MPa @ 36 GPa, respectively. The hoop strain and axial strain of the cylindrical CFRP product under 35 MPa are about 3000 and 1900 με, which meet the design requirements of the HSPMSM.

      • KCI등재

        Analysis and Optimization of Energy Consumption for Multi-part Printing Using Selective Laser Melting and Considering the Support Structure

        Zhilin Ma,Mengdi Gao,Kai Guo,Qingyang Wang,Lei Li,Conghu Liu,Guang Zhu,Zhifeng Liu 한국정밀공학회 2023 International Journal of Precision Engineering and Vol.10 No.3

        Selective laser melting (SLM) can form complex and precise metal parts simultaneously and is widely used in medical and aerospace fields. The support structure plays an important role in SLM process, including supporting the overhanging structure, dissipating heat, and minimizing geometric deformation caused by internal stress. However, a non-optimal support structure causes increased energy and material consumption during processing and must be removed afterward to allow for utilization of the parts. Existing support structure design methods only consider reducing the support of a single part, and research on the support and energy consumption of simultaneous multi-part printing is lacking. Therefore, to reduce the energy and material consumption of simultaneous multi-part printing by SLM and improve processing efficiency, an energy consumption analysis and optimization method is proposed in this study from the perspective of the support structure. Based on previous studies on energy consumption distribution of the additive manufacturing process, a multi-component SLM energy consumption and material consumption model was established. Furthermore, a shared-support optimization strategy for simultaneous multi-part processing is proposed. For optimization, the method selects the appropriate printing direction of one part, and then combines multiple parts to form a shared support structure to minimize energy consumption. Finally, under the constraint of minimizing the mass, an optimization strategy of the SLM multi-part shared support combination is established, and the purpose of reducing the energy consumption and material consumption of the SLM is achieved under the premise of ensuring the geometric accuracy of the parts. The method was applied to the manufacturing process of a group of parts with a beam structure. Compared with the printing method using independent support, the shared support structure method reduced energy consumption more than 5.5%, material consumption for the support structure more than 17.2%, and printing time to a certain extent. This method effectively improves SLM production efficiency and sustainability and provides strategic support for additive manufacturing designers and producers.

      • KCI등재

        硏究論文 : 중국 사막지역의 방풍책 높이와 공극률에 따른 방풍효과 및 설치비용 비교분석

        박기형 ( Ki Hyung Park ),( Guo Dong Ding ),( Guang Ling Fang ),김찬범 ( Chan Beom Kim ),( Bin Wu ),( Yan Feng Bao ),( Guang Lei Gao ),정성철 ( Sung Cheol Jung ),문강민 ( Kang Min Moon ) 한국환경복원기술학회(구 한국환경복원녹화기술학회) 2012 한국환경복원기술학회지 Vol.15 No.6

        This study was conducted in Ningxia Hui autonomous region, located at southern part of Mu Us sand land in China. To investigate relationships between windbreak effect and installation cost of sand barriers, plastic net is utilized by using four kind of heights (0.2, 0.3, 0.4 and 0.5m) and four kind of porosities (20, 30, 50 and 70%). These heights and porosities are measured for estimating distances for effective windbreak. It is shown that porosity and the distance have a positive relationship at same heights and porosity on ground indicates a constant figure when height reaches a certain level, regardless of the porosity. This implies that there is a difference of level of windbreak with different porosities; however, distance of windbreak effect is same at the same height of sand barrier. As a result of comparison between porosity of sand barrier on the ground and installation cost in each sand barrier with various heights and porosities (16 combinations), 0.4m and 0.5m height sand barriers describe highest economical efficiency. Within two variables, we concluded that height has a higher impact on windbreak effect than porosity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼