RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Measurement of Cement Solidified Radioactive Waste According to the Compressive Test Condition

        Hyeongjin Byeon,Hyeonjune Noh,Jaeyeong Park 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Low-and intermediate level waste (LILW) should be solidified and satisfy the waste acceptance criteria (WAC) to be disposed of in the LILW repository. The LILW should be uniformly solidified and should maintain its structural stability under the expected condition according to the WAC. Compressive strength of cement solidified waste should satisfy at least 3.44 MPa to be disposed of in the repository. In addition, its compressive strength should satisfy at least 3.44 MPa after the irradiation, immersion and leaching test. The compressive strength test and dimension of test specimen differ according to countries. However, measured compressive strength of solidified waste is affected by geometry of specimen and test condition. Diameter, ratio between diameter and height, and porosity are one of factors that affect to the compressive strength of cement solidified waste. Generally, specimen with larger diameter shows higher value of measured compressive strength. The ratio of height and diameter shows similar tendency to the diameter while larger porosity generally lowers the compressive strength. In other hands, higher compressive strength is expected when the loading rate is higher during the compressive strength test. U.S. is applying loading rate from ASTM C39 (0.25±0.05 MPa) for the compressive strength test while Korea is applying loading rate from KS F 2405 (0.6 MPa·s?1). France applies loading rate following FT-02-010 (0.5 MPa·s?1) for cement solidified waste. As the measured compressive strength increases when the loading rate increases, the effect of loading rate to the compressive strength of cement solidified waste should be assessed by quantification and consider its effect on the sight of regulation. In this study, the effect of geometric parameters of specimen and test condition to the compressive strength are checked by manufacturing specimen by solidifying mock sludge waste with cement. To prevent increasing amount of secondary waste, effects of ratio of height and diameter and porosity to the compressive strength are checked while diameter value is fixed. For loading rate, loading rate from ASTM C39 and KS F 2405 were compared. Existence of significant variance of measured compressive strengths of cement solidified waste are check by performing statistical analysis. Finally, by analyzing the relationship between test condition and measured compressive strength, the test method that measures the compressive strength conservatively is aimed to be derived.

      • KCI등재

        압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가

        박기준,김원우,박정준,문재흠,김성욱 한국구조물진단유지관리공학회 2018 한국구조물진단유지관리공학회 논문집 Vol.22 No.3

        이 논문은 압축강도 수준(100, 140, 180 MPa급)에 따른 HPFRCC의 동적충격 인장강도를 평가하였다. 먼저 100, 140, 180 MPa급 HPFRCC의 압축응력-변형률 관계를 분석한 결과 압축강도는 각각 112, 150, 202 MPa로 나타났으며, 압축강도가 높아짐에 따라 탄성계수도 증가하는 경향을 나타내었다. 100, 140, 180 MPa급 HPFRCC의 정적 인장강도는 각각 10.7, 11.5, 16.5 MPa로 나타났으며, 압축강도가 높아질 수록 인장강도도 증가하는 경향을 나타내었다. 반면 100 및 140 MPa급 HPFRCC에서의 인장강도 및 에너지 흡수능력은 압축강도 수준에 따라 큰 차이를 보이지 않았다. 이는 시험체의 규격 및 강섬유의 배열에 영향을 받은 것으로 판단된다. HPFRCC의 동적충격 인장강도를 평가한 결과, 변형률 속도가 10-1/s에서 150/s로 증가할수록 모든 HPFRCC의 인장강도와 동적증가계수는 증가하는 경향을 보였다. 한편 동일한 범위의 변형률 속도에서 HPFRCC의 압축강도가 낮을수록 인장강도에 대한 DIF가 높게 측정되어 효율적인 측면에서는 100 MPa급 HPFRCC가 가장 우수한 것으로 나타났다. 따라서 높은 수준의 인장성능이 요구되는 경우 높은 압축강도를 가지는 HPFRCC를 사용하는 것이 유리하며, 폭발과 같은 고속변형률 속도에서 보다 효율적인 접근을 위해서는 목표 압축강도에 근접한 HPFRCC를 사용하는 것이 바람직한 것으로 판단된다. This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

      • KCI등재

        Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures

        Rodrigues Maykely Naara Morais,Bruno Kely Firmino,Alencar Ana Helena Gonçalves de,Silva Julyana Dumas Santos,Siqueira Patrícia Correia de,Decurcio Daniel de Almeida,Estrela Carlos 대한치과보존학회 2021 Restorative Dentistry & Endodontics Vol.46 No.4

        Objectives This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive. Objectives This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.

      • KCI등재

        Machine Learning Based Compressive Strength Prediction Model for CFRP-confined Columns

        Yong Yu,Tianyu Hu 대한토목학회 2024 KSCE Journal of Civil Engineering Vol.28 No.1

        The study described in the paper focuses on the compressive strength of concrete columns that are reinforced with carbon fiber reinforced polymer (CFRP). The researchers aimed to identify the main parameters that affect the compressive strength of these confined columns. They used models to analyze and study the relationship between these parameters and the compressive strength. The study found that certain parameters had an inverse relationship with compressive strength. These parameters include the column diameter, CFRP fracture strain, and modulus of elasticity. On the other hand, the CFRP thickness and concrete strength exhibited a positive relationship with the compressive strength. The study also determined that the influence of column diameter and CFRP thickness was greater compared to the influence of CFRP fracture strain and elastic modulus on the compressive strength. To predict the compressive strength, the researchers developed a machine learning algorithm-based compressive strength prediction model. They found that a backpropagation (BP) neural network model showed high prediction accuracy and robustness in predicting the strength. Additionally, the researchers' model was analyzed, and it was found that while the calculated values from their model aligned well with the experimental results, there were some issues with overestimating or conservatively estimating the compressive strength in certain cases.

      • Relationship between flexural or splitting tensile strength and compressive strength of roller-compacted concrete

        Chhorn Chamroeun,Han Seung Hwan,Chon Beom Jun,Lee Seung Woo 한국도로학회 2015 한국도로학회 학술발표회 논문집 Vol.2015 No.10

        More Roller-compacted concrete (RCC) is a dry concrete consisted of same materials as conventional concrete with different proportioning which requires compaction effort in order to reach its final form. Thus, both hydration and aggregate interlock play important roles in its strength augmentation. Flexural strength, an important factor in pavement design and fatigue cracking resistance, can be difficult to be obtained at in-situ and may be subjected to high variability. Even though its compressive strength is relatively high compared to conventional concrete with similar binder content, the relationship between compressive strength and flexural or tensile strength were not well defined. The goal of this research is to compare the relationship between compressive strength and flexural strength as well as the relationship between compressive strength and splitting tensile strength of RCC with those of conventional concrete using various equations suggested in other researches and also to determine new regression equations for estimating RCC’s flexural and splitting tensile strength. The positive result of RCC’s flexural strength was found; it was higher than majority of predicted values from conventional concrete for the same compressive strength. In contrast, RCC’s splitting tensile strength was relatively low compared to that of conventional concrete for the same compressive strength. Power equations were learned to be suitable for relationship between compressive and flexural strengths as well as relationship between compressive and splitting tensile strengths.

      • KCI우수등재

        쥬라기 화강암류에서 발달된 1번 면, 2번 면 및 3번 면의 역학적 특성

        박덕원 한국암석학회·(사)한국광물학회 2020 광물과 암석 (J.Miner.Soc.Korea) Vol.33 No.3

        화강암 석산에서 1번 면, 2번 면 및 3번 면으로 알려진 세 직교하는 분할면의 강도 특성을 검토하였다. R, G 및 H 공시체는 거창 및 합천 지역에서 분포하는 쥬라기 화강암류의 블럭 샘플로부터 획득하였다. 이들 세 공시체의 장축의 방향은 세 면 각각에 수직이다. 세 면에 대한 판별에 유용한 주요 사항은 다음과 같다. 첫째, R, G 및 H 공시체의 일축압축강도와 관련된 세 그래프의 스케일링 특성을 보여 주는 도면을 작성하였다. 강도의 증가에 따라 세 공시체의 그래프는 H < G < R의 순으로 배열한다. 공시체 내부의 조직 균일도를 지시하는 세 공시체에 대한 그래프의 경사각을 비교하였다. H 공시체(θH, 24.0°~37.3°)에 대한 상기한 각이 세 공시체 중에서 가장 낮다. 둘째, 두 공시체의 평균압축강도의 조합을 나타내는 RG, GH 및 RH 공시체의 세 그래프와 관련된 스케일링 특성을 도출하였다. 다양한 형태를 취하는 이들 세 그래프는 GH < RH < RG의 순으로 배열한다. 섯째, 강도차(Δσt)와 경사각(θ) 사이의 상관도를 작성하였다. 위의 두 파라미터는 -0.003의 지수(λ)를 갖는 지수함수의 상관성을 보여 준다. 두 화강암에서, RH-그래프의 경사각(θRH)이 가장 낮다. 넷째, 세 공시체에 대한 세 종류의 압축강도 그리고 각 공시체에 가해진 압축하중에 평행 배열하는 두 조의 미세균열에 대한 다섯 파라미터 사이의 상관 관계를 보여 주는 여섯 유형의 도면을 작성하였다. 거창 및 합천화강암에 대한 이들 도면으로부터, 빈도수(N, 0.872) 및 밀도(ρ, 0.874)와 함께 총 길이(Lt)에 대한 상관계수(R2)의 평균값(0.877)이 가장 높다. 또한, 세 공시체의 최소(0.768) 및 최대(0.804)의 압축강도에 비하여 평균압축강도와 관련된 상관계수의 값(0.829)이 보다 높다. 다섯째, 거창화강암의 세 공시체에서 발달된 상기의 두 조의 미세균열과 평행한 방향으로 측정한 압열인장강도의 분포 특성을 도출하였다. 관련 도면으로부터, R, G 및 H 공시체에 해당하는 이들 인장강도에 대한 세 그래프는 H(R1+G1) < G(R2+H1) < R(R1+G1)의 순을 보여 준다. 인장강도에 대한 세 그래프의 배열순과 압축강도에 대한 세 그래프의 배열순과 상호 부합한다. 따라서, 세 공시체의 압축강도는 상기한 세 유형의 인장강도와 상호 비례한다. 여섯째, 상기한 세 그래프에서 도출한 각 누적수(N=1~10)에 해당하는 세 인장강도 그리고 각 그래프에 해당하는 다섯 파라미터의 값 사이의 상관 계수를 도출하였다. 10개의 상관도에서 도출한 각 파라미터에 대한 상관 계수의 평균값은 밀도(0.763) < 총 길이(0.817) < 빈도수(0.839) < 평균 길이(Lm, 0.901) ≦ 중앙 길이(Lmed, 0.903)의 순으로 증가한다. 일곱째, 세 공시체에 대한 일축압축강도 그리고 압열인장강도 사이의 상관도를 작성하였다. 상기한 상관도는 세 종류의 압축강도 그리고 다섯 그룹(A~E)의 인장강도를 근거로 아홉 유형으로 분류하였다. 관련 도면으로부터, 최소압축강도를 제외한 평균 및 최대압축강도와 함께 인장강도가 증가할수록, 상관계수의 값은 급격하게 증가한다. The strength characteristics of the three orthogonal splitting planes, known as rift, grain and hardway planes in granite quarries, were examined. R, G and H specimens were obtained from the block samples of Jurassic granites in Geochang and Hapcheon areas. The directions of the long axes of these three specimens are perpendicular to each of the three planes. First, The chart, showing the scaling characteristics of three graphs related to the uniaxial compressive strengths of R, G and H specimens, were made. The graphs for the three specimens, along with the increase of strength, are arranged in the order of H < G < R. The angles of inclination of the graphs for the three specimens, suggesting the degree of uniformity of the texture within the specimen, were compared. The above angles for H specimens(θH, 24.0°~37.3°) are the lowest among the three specimens. Second, the scaling characteristics related to the three graphs of RG, GH and RH specimens, representing a combination of the mean compressive strengths of the two specimens, were derived. These three graphs, taking the various N-shaped forms, are arranged in the order of GH < RH < RG. Third, the correlation chart between the strength difference(Δσt) and the angle of inclination(θ) was made. The above two parameters show the correlation of the exponential function with an exponent(λ) of -0.003. In both granites, the angle of inclination(θRH) of the RH-graph is the lowest. Fourth, the six types of charts, showing the correlations among the three kinds of compressive strengths for the three specimens and the five parameters for the two sets of microcracks aligned parallel to the compressive load applied to each specimen, were made. From these charts for Geochang and Hapcheon granites, the mean value(0.877) of the correlation coefficients(R2) for total density(Lt), along with the frequency(N, 0.872) and density(ρ, 0.874), is the highest. In addition, the mean values(0.829) of correlation coefficients associated with the mean compressive strengths are more higher than the minimum(0.768) and maximum(0.804) compression strengths of three specimens. Fifth, the distributional characteristics of the Brazilian tensile strengths measured in directions parallel to the above two sets of microcracks in the three specimens from Geochang granite were derived. From the related chart, the three graphs for these tensile strengths corresponding to the R, G and H specimens show an order of H(R1+G1) < G(R2+H1) < R(R1+G1). The order of arrangement of the three graphs for the tensile strengths and that for the compressive strengths are mutually consistent. Therefore, the compressive strengths of the three specimens are proportional to the three types of tensile strengths. Sixth, the values of correlation coefficients, among the three tensile strengths corresponding to each cumulative number(N=1~10) from the above three graphs and the five parameters corresponding to each graph, were derived. The mean values of correlation coefficients for each parameter from the 10 correlation charts increase in order of density(0.763) < total length(0.817) < frequency(0.839) < mean length(Lm, 0.901) ≦ median length(Lmed, 0.903). Seventh, the correlation charts among the compressive strengths and tensile strengths for the three specimens were made. The above correlation charts were divided into nine types based on the three kinds of compressive strengths and the five groups(A~E) of tensile strengths. From the related charts, as the tensile strength increases with the mean and maximum compressive strengths excluding the minimum compressive strength, the value of correlation coefficient increases rapidly.

      • 압축강도 측정방법에 따른 80MPa급 UHPC으I 품질관리에 관한 연구

        구현철 ( Koo Hyun-chul ),문지훈 ( Moo Ji-hun ),이학주 ( Lee Hak-ju ),박민상 ( Park Min-sang ),초성 ( Choi Sung ) 한국건축시공학회 2019 한국건축시공학회 학술발표대회 논문집 Vol.19 No.1

        Recently, efforts are made to apply 200MPa levels of ultra-high strength concrete to structures exceeding 40MPa.. Ultra-high strength concrete has been steadily researched in Korea as well as abroad, and now it is equipped with 200MPa ultra-high strength concrete mixing technology. Because ultra-high strength concrete has a higher range of compressive strength than ordinary concrete, it is difficult to accurately measure the compressive strength of UHPC concrete with existing compressive strength measuring equipment and can be less reliable. In this study, the compressive strength of the SC80 was measured according to the test method to compare the compressive strength of the SC80 by applying various methods of measurement of compressive strength. The compressive strength test method measured the compressive strength according to the size of the specimen, the grinding method, and the capacity of the UTM equipment.

      • KCI등재

        Neuro-fuzzy based approach for estimation of concrete compressive strength

        Xinhua Xue,Hongwei Zhou 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.6

        Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

      • SCIESCOPUS

        Long-term development of compressive strength and elastic modulus of concrete

        Yang, Shuzhen,Liu, Baodong,Yang, Mingzhe,Li, Yuzhong Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.2

        Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

      • KCI등재

        Long-term development of compressive strength and elastic modulus of concrete

        Shuzhen Yang,Baodong Liu,Mingzhe Yang,Yuzhong Li 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.2

        Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼