RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Understanding the Responses of Rice to Environmental Stress Using Proteomics

        Singh, Raksha,Jwa, Nam-Soo American Chemical Society 2013 Journal of proteome research Vol.12 No.11

        <P>Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stressesincluding cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the increasing abiotic stress conditions caused by global climate change.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jprobs/2013/jprobs.2013.12.issue-11/pr400689j/production/images/medium/pr-2013-00689j_0005.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/pr400689j'>ACS Electronic Supporting Info</A></P>

      • KCI등재

        Research on Biotic and Abiotic Stress Related Genes Exploration and Prediction in Brassica rapa and B. oleracea: A Review

        ( Md. Abdul Kayum ),( Hoy Taek Kim ),( Ujjal Kumar Nath ),( Jong In Park ),( Kang Hee Kho ),( Yong Gu Cho ),( Ill Sup Nou ) 한국육종학회 2016 Plant Breeding and Biotechnology Vol.4 No.2

        Global population is increasing day-by-day, simultaneously, crop production need to increase proportionately. Whereas, increase crop production being restricted due to abiotic and biotic stresses. Abiotic stresses are adversely affected crop growth and development, leading to crop loss globally and thereby causing huge amount of economic loss as well. Contrary, pathogens are attacked the plants imposing biotic stress and severely hampers the yield. Therefore, it is prime need to understand the molecular mechanism and genes involved to minimize the biotic and abiotic stresses for mitigating the Brassica vegetable crop losses. The stress responsive, pathogens related genes are involved in tolerance or resistance to stress in plants that are cross-talk with different types of stress components in signal transduction pathways. The plants have their own mechanism to overcome biotic and abiotic stresses to follow the abscisic acid (ABA)-dependent and ABA-independent pathways. Several transcription factors such as WRKY, Alfin-like, MYB, NAC, DREB, CBF are integrating to various stress signals and controlling the gene expression through networking with their related cis-elements. To develop stress tolerance and/or resistant crops plants, there is need to realize both of the plant and pathogenic disease development mechanisms. Therefore, this article is focused on (i) major and devastating stresses on vegetable crops, (ii) role of genes to overcome the stresses, and (iii) differential genes expressed under biotic and abiotic stresses in Brassica oleracea and B. rapa for getting insight of the mechanisms of development of resistance lines.

      • A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic <i>Arabidopsis</i> plants by affecting translation of chloroplast transcripts

        Nawaz, Ghazala,Lee, Kwanuk,Park, Su Jung,Kim, Yeon-Ok,Kang, Hunseung Elsevier 2018 Vol. No.

        <P><B>Abstract</B></P> <P>Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (<I>Brassica rapa</I>), in abiotic stress responses. The expression of <I>BrRH22</I> was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in <I>Arabidopsis</I> enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of <I>ABI3, ABI4,</I> and <I>ABI5</I>. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic <I>Arabidopsis</I> to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Expression of cabbage RNA helicase BrRH22 is differentially affected by abiotic stresses. </LI> <LI> BrRH22 is localized to chloroplasts and possesses RNA chaperone activity. </LI> <LI> BrRH22 plays a positive role in seed germination and seedling growth under stress conditions. </LI> <LI> BrRH22 enhances seedling growth and cotyledon greening by decreasing <I>ABI3, ABI4,</I> and <I>ABI5.</I> </LI> </UL> </P>

      • KCI등재

        근권미생물에 의한 식물의 생물·환경적 복합 스트레스 내성 유도

        유성제,상미경,Yoo, Sung-Je,Sang, Mee Kyung 한국식물병리학회 2017 식물병연구 Vol.23 No.2

        식물은 재배기간 동안 세균, 진균, 바이러스 등의 생물 스트레스뿐만 아니라 고온, 염, 건조 등 다양한 환경 스트레스에도 노출되어 왔다. 최근에는 기후 이상현상으로 인하여 환경 스트레스의 빈도 및 강도가 불규칙적으로 증가하고 있으며 이로 인해 병원균의 생장과 영향도 변화하여 생물과 환경의 복합 스트레스가 식물 재배에 큰 영향을 주고 있다. 유용미생물을 이용한 식물의 저항성 유도는 다양한 생물과 환경 스트레스로부터 식물을 보호하는 데 도움을 주며, 이러한 스트레스에 대한 피해를 감소시킬 수 있는 가능성을 열어 주었다. 본 리뷰에서는 식물의 생물과 환경 스트레스에 대한 피해를 감소시키는 데 영향을 주는 미생물의 결정인자에 대해 기술하였으며 미생물 결정인자에 의해 유도되는 식물 신호전달 체계 변화에 대해 기술하였다. 또한 복합 스트레스 경감을 위한 미생물의 역할과 연구 방향에 대해 기술하였다. 이 리뷰를 통해 변화하는 환경에 대비하기 위해서 다양한 방안을 마련하고 있는 농민들에게 도움이 되기를 바라며, 실제 유용미생물 연구가 식물 재배 중 발생할 수 있는 다양한 스트레스에 따른 농가 피해를 감소시킬 효과적 대응 방안으로 이어지길 바란다. Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack) and abiotic stress (salt, high/low temperature, drought). Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR) to biotic stress or induced systemic tolerance (IST) to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses ($biotic{\times}abiotic$). We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

      • KCI등재

        Epigenetic control of abiotic stress signaling in plants

        Chung Sunglan,Kwon Chian,Lee Jae-Hoon 한국유전학회 2022 Genes & Genomics Vol.44 No.3

        Background: Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses. Objective: Herein, the current progress in elucidating the epigenetic regulation of abiotic stress signaling in plants has been summarized in order to further understand the systems plants utilize to effectively respond to abiotic stresses. Methods: This review focuses on the action mechanisms of various components that epigenetically regulate plant abiotic stress responses, mainly in terms of DNA methylation, histone methylation/acetylation, and chromatin remodeling. Conclusions: This review can be considered a basis for further research into understanding the epigenetic control system for abiotic stress responses in plants. Moreover, the knowledge of such systems can be effectively applied in developing novel methods to generate abiotic stress resistant crops.

      • KCI등재

        Deep transcriptome sequencing reveals the expression of key functional and regulatory genes involved in the abiotic stress signaling pathways in rice

        R.C. Venu,M.V. Sreerekha,M. Sheshu Madhav,Kan Nobuta,K. Madhan Mohan,Songbiao Chen,Yulin Jia,Blake C. Meyers,Guo-Liang Wang 한국식물학회 2013 Journal of Plant Biology Vol.56 No.4

        Drought, salt and cold are the major abiotic stresses that limit the rice production. Identification of the key functional and regulatory genes in the abiotic stress signaling pathways is important for understanding the molecular basis of abiotic stress tolerance. In this study, we investigated the transcriptomes of rice leaves and roots under cold, drought, and salt stresses using the massively parallel signature sequencing (MPSS) and sequencing by synthesis (SBS) technologies. About 1.8 to 2.6 million individual signatures were obtained from the seven abiotic-stressed and control libraries of the japonica cultivar Nipponbare. A total of 102,630 and 1,414,788 distinct signatures were obtained from the MPSS and SBS libraries, respectively. Clustering analysis identified many up- and down-regulated genes specifically and commonly expressed in the cold, drought and salt-treated plant leaves and roots. Data mining revealed the expression patterns of key functional and regulatory genes that were involved in different abiotic stress signaling pathways. Highly conserved cis-regulatory elements in the promoter of the up-regulated genes were identified. Our comprehensive and deep survey of abiotic stress transcriptome of rice has provided candidate genes for further understanding the molecular basis of abiotic stress tolerance in rice.

      • KCI등재

        애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정

        석혜연(Hye-Yeon Seok),응웬부린(Linh Vu Nguyen),배형준(Hyoungjoon Bae),하지민(Jimin Ha),김하연(Ha Yeon Kim),이선영(Sun-Young Lee),문용환(Yong-Hwan Moon) 한국생명과학회 2018 생명과학회지 Vol.28 No.9

        환경 스트레스는 식물의 성장을 저해하며 작물의 생산량을 감소시키는 주요 원인이다. 식물은 다양한 유전자의 발현 변화를 통해 스트레스에 대한 저항성을 나타낸다. 본 연구에서는 activation tagging system을 이용하여 기존에 밝혀지지 않은 새로운 고염 스트레스 반응 유전자들을 분리하였다. 애기장대의 발아 단계에서 고염 스트레스에 저항성을 보이는 9개의 activation tagging 라인을 선별하였다. 그 중 TAIL-PCR 방법을 이용하여 AT7508, AT7512, AT7527, AT7544, AT7548, AT7556의 6개 라인에서 T-DNA가 삽입된 위치를 확인하였으며 각 라인에서 T-DNA가 삽입된 주변 유전자의 발현을 RT-PCR로 분석하였는데 AT7508, AT7512, AT7527, AT7544, AT7556에서 각각 ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), microtubule-associated protein (At5g16730)이 activation 된 것으로 밝혀졌다. 더불어 AT7548에서는 T-DNA가 삽입된 곳의 양쪽에 위치하는 두 유전자인 Arabinogalactan protein 13 (AGP13) (At4g26320)과 F-box/RNI-like/FBD-like domains-containing protein (At4g26340)이 모두 activation 되었다. Activation 된 7개 유전자는 기존에 고염 스트레스 저항성과 관련된 기능이 알려지지 않은 유전자로 본 연구를 통해 새롭게 고염 스트레스 반응에 대한 기능이 밝혀졌다. 7개의 activation된 유전자 중 ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein의 3개 유전자는 고염 스트레스에 의해 발현이 증가하였다. 또한 AT7508과 AT7527, AT7544 라인은 발아 단계뿐만 아니라 유식물체발달 과정에서도 고염 스트레스 저항성을 보여 activation tagging 라인의 선별 결과의 타당성을 뒷받침 하였다. 본 연구의 결과를 통해 activation tagging system이 새로운 스트레스 반응 유전자를 찾아낼 수 있는 유용한 기술임을 확인할 수 있었다. Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.

      • KCI등재

        Molecular genetics and functional genomics of abiotic stressresponsive genes in oilseed rape (Brassica napus L.): a review of recent advances and future

        Channakeshavaiah Chikkaputtaiah,Johni Debbarma,Indrani Baruah,Lenka Havlickova,Hari Prasanna Deka Boruah,Vladislav Curn 한국식물생명공학회 2017 Plant biotechnology reports Vol.11 No.6

        Abiotic stresses are the key factors which negatively influence plant development and productivity and are the main cause of extensive agricultural production losses worldwide. Brassica napus is an oilseed crop of global economic significance and major contributor to the total oilseed production, quite often encounters abiotic stresses, resulting in reduced agricultural productivity. Hence, there is an immediate need being felt to raise B. napus cultivars which would be more suitable for various abiotic stress conditions presently and in the years to come. Biotechnology and molecular plant breeding has emerged as an important tool for molecular understanding of plant response to various abiotic stresses. Currently, various stress-responsive genes and mechanisms have been identified and functionally characterized in model plant Arabidopsis and other major crop plants such as Oryza sativa and Zea mays. However, very inadequate success has been achieved in this direction in a major oilseed crop such as B. napus. In this review, we present the latest methods and approaches of studying abiotic stress in B. napus. In this review, we describe the genes functioning as markers for crop breeding and discuss the recent progress and advances in genome editing by break through CRISPR/Cas9 multigene– multiplex approaches for developing multiple abiotic stress tolerance with our on-going research as a scheme. We also throw some light on molecular genetics, plant breeding and abiotic stress biotechnology of B. napus which offer a new prospective on the research directions for the practical plant breeding and functional genomics of B. napus in response to different abiotic stress conditions.

      • KCI등재

        Changes in plant anthocyanin levels in response to abiotic stresses: a meta-analysis

        Yan Wenjie,Li Juanjuan,Lin Xinyue,Wang Lina,Yang Xiaoxiao,Xia Xiangyu,Zhang Yuxin,Yang Shaoyu,Li Hongbing,Deng Xiping,Ke Qingbo 한국식물생명공학회 2022 Plant biotechnology reports Vol.16 No.5

        Anthocyanins are small molecule antioxidants that play important roles in plant response and resistance to abiotic stresses. Their levels increase when plants are exposed to abiotic stress. However, the general response patterns and magnitude of anthocyanin increase, and how they confer resistance to abiotic stresses, are difficult to evaluate because of the influence of experimental variables. In this study, changes in plant anthocyanin content under different abiotic stresses and the effect of anthocyanin overproduction on various physiological indicators were investigated through meta-analysis derived from 1039 datasets of 102 studies. Results showed that among the different stress types, heavy metals, especially copper (Cu) and mercury (Hg), induced the most significant synthesis of anthocyanins. Among the different types of drought treatments, mannitol caused anthocyanin content in plants to increase by 2.4-fold, which was more significant than that of polyethylene glycol and natural drought. Furthermore, UV stress led plant anthocyanins to increase 1.3-fold in C4 plants, which was higher than that in C3 plants. In addition, anthocyanins increased the most when the applied stresses were low and moderate, and of short duration. Moreover, plants overexpressing genes encoding MYB transcription factors increased anthocyanin content by 5.8-fold and significantly improved plant stress tolerance. Among the 21 physiological indicators, glutathione and proline levels increased the most in transgenic plants overproducing anthocyanins when exposed to abiotic stress. Taken together, this meta-analysis indicates that anthocyanins enhance stress tolerance by improving the antioxidant, metal-chelating, and osmoregulatory abilities of the plant. The results presented here can help guide future applications of anthocyanins as plant growth regulators in dryland agriculture and breeding for plant stress tolerance.

      • KCI등재

        비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현

        김나은,송홍규,Kim, Na-Eun,Song, Hong-Gyu 한국미생물학회 2016 미생물학회지 Vol.52 No.2

        ACC deaminase 활성이 높은 균주인 Enterobacter ludwigii SJR3를 이용하여 건조와 염분 스트레스 환경에서 토마토 식물의 생장촉진 효과와 스트레스-관련 유전자의 발현을 조사하였다. 4주 키운 토마토 식물에 SJR3 균주 접종 후 건조 스트레스와 염분 스트레스를 처리하면서 1주일 후 식물의 생장을 비교하였다. 건조 스트레스 환경에서는 균주 접종군이 비접종군에 비해 뿌리와 줄기 길이 및 습윤과 건조중량이 각각 37.8, 37.2, 96.8과 146.6% 증가하였고 염분 스트레스 환경에서는 각각 19.2, 25.4, 19.5와 105.8% 증가하였다. 또한 스트레스에 반응하여 토마토 잎에 축적되는 proline의 함량은 크게 늘어나지만 건조와 염분 스트레스 처리 시 비접종 대조군 보다 균주 접종군에서 62.1%와 54.1% 감소되었다. 스트레스 환경에서 자라난 토마토 식물에서 스트레스-관련 유전자들인 ACC oxidase의 유전자 ACO1과 ACO4, ethylene response factor의 유전자 ERF1과 ERF4 등의 상대적인 발현량을 조사하였다. 비 스트레스 대조군과 비교해서 건조와 염분 스트레스 환경의 토마토 식물에서 모든 스트레스-관련 유전자들의 발현이 크게 증가하였으나 SJR3 균주를 접종한 식물의 유전자들은 대부분이 비 스트레스-처리 대조군과 유사한 정도의 유전자 발현량을 나타내었다. 따라서 E. ludwigii SJR3는 식물에서 건조와 염분 스트레스의 완화에 중요한 역할을 하여 작물의 생장을 촉진하고 생산성을 높일 수 있을 것으로 여겨진다. This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼