RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        행거의 고유진동수를 이용한 현수교의 구조적 성능 평가

        우상익,김경남,이성행,정경섭,Wu, Sang Ik,Kim, Kyoung Nam,Lee, Seong Haeng,Jung, Kyoung Sup 한국강구조학회 2004 韓國鋼構造學會 論文集 Vol.16 No.2

        As a special infrastructure, it is important that the suspension bridges which were designed by using the cable are carefully maintained and safely inspected after their construction, more than what is done in other cases of bridge structures. However, the structural analysis for their design and maintenance has considered only the simplified geometric shape of the structure. Particularly, it is not easy to make the modeling analyze the bridge structure including detailed steel deck plates. In this paper, we evaluated the structural behaviors and performances of the completed earth-anchored suspension bridge that was in a completed state through both the tension of hanger member and their computational analysis. We considered the frame system and the detailed steel deck plates that were especially added into the modeling to take more precision analysis about it. We also applied hanger tensions converted by the natural frequency and the natural frequency of the bridge when in normal vibration. Results of the vehicle loading test were used in the analysis. We compared the results by using our modeling with the result of the loading test and the hanger tension. Our prediction on the behavior of the structure emulates the behavior of the real structure. In applying the data measured by the typhoon "Maemi" which arrived in-land last year, we confirmed our analysis model for the possibility of applying effectively into the preliminary design and maintenance plan. 사회 기반 특수 시설로서 케이블을 이용한 현수교는 완공 후에 일반적인 교량 보다 더 신중한 안전점검 및 유지관리가 필요하다. 그러나, 교량의 설계 및 유지관리를 위한 구조해석은 구조체의 단순화된 기하학적 형상만을 고려하고 있다. 특히 강상판을 포함한 교량 구조물의 해석 모델링은 쉽지 않다. 본 논문에서는 완성계 현수교에 대한 행거 부재의 고유진동수와 전산해석을 통해 구조적 거동과 성능을 평가하였다. 전산해석의 정확도를 높이기 위해 해석 모델에 뼈대 구조물과 강상판을 고려하였다. 또한, 측정된 행거 장력과 상시 진동시에 측정된 구조물의 고유진동수 및 차량 재하시험 결과를 해석에 적용하였다. 결과로서, 제안된 알고리즘에 의한 예상 구조거동은 실제 구조물에서 측정된 자료와 매우 유사한 결과를 보였다. 또한, 내륙에 상륙한 태풍 매미에 의해 측정된 자료를 적용한 결과, 해석모델이 구조물의 예비설계 및 유지관리에 효과적으로 적용될 수 있음을 확인하였다.

      • 환상류-간헐류 천이 모델이 드라이아웃 모델에 미치는 영향 평가

        우상익(S. I. WU),임인철 한국전산유체공학회 2004 한국전산유체공학회 학술대회논문집 Vol.2004 No.-

        The initial conditions such as the film thickness and the void fraction at the onset of annular flow are required for the analytical dryout model. The Disturbance Wave Instability model(DWI model) is one of the model describing the Annular-to- Intermittent Flow regime Transition(AIFT). The experimental CHF conditions for the uniformly heated tube were compared with the predictions by the modified Levy model, for which the initial conditions at AIFT were estimated by the DWI model. For the flow through long tubes with small inlet subcooling, the effect of AIFT model on the dryout prediction was little. However, the use of DWI model gave better prediction of CHF in a short tube.

      • 안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성

        우상익(S. I. Wu),박용철(Y. C. Park) 한국전산유체공학회 2004 한국전산유체공학회 학술대회논문집 Vol.2004 No.-

        The HANARO, multi~purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 ㎜ of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

      • 냉중성자 실험동 건물의 내진설계를 위한 동적지반정수 산정

        우상익 ( Wu Sang Ik ),김영기 ( Kim Young Ki ) 한국구조물진단유지관리공학회 2006 한국구조물진단유지관리공학회 학술발표대회 논문집 Vol.10 No.2

        This paper presents the dynamic elastic constants determined from the soil investigation for the seismic design of a cold neutron laboratory building which was classified in the seismic category. The subsoil characteristics defined by the investigation should be applied to the evaluation of the foundation stability and the dynamic constants should be taken in such a way that they are used as basic input data for the dynamic response analysis of the building.

      • 냉중성자 실험동 건물의 내진설계를 위한 동적지반정수 산정

        우상익(Wu Sang Ik),김영기(Kim Young Ki) 한국구조물진단유지관리학회 2006 한국구조물진단학회 학술발표회논문집 Vol.10 No.2

        This paper presents the dynamic elastic constants determined from the soil investigation for the seismic design of a cold neutron laboratory building which was classified in the seismic category. The subsoil characteristics defined by the investigation should be applied to the evaluation of the foundation stability and the dynamic constants should be taken in such a way that they are used as basic input data for the dynamic response analysis of the building.

      • 하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석

        박용철(Y. C. Park),우상익(S. I. Wu) 한국전산유체공학회 2004 한국전산유체공학회 학술대회논문집 Vol.2004 No.-

        The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve m (12 m) depth of the reactor pool and cold by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and exit through the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to study the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, about fourteen kilogram per second (14 ㎏/s) suppressed the guide tube jet and met the design cooling flow rate in a circular flow tube, and that the fission moly target cooling flow rate met the minimum flow rate to cool the target.

      • 연구로건설사업 문서관리시스템 향상

        박국남(Kook-Nam Park),우상익(Sang-Ik Wu) 한국산업경영시스템학회 2012 한국산업경영시스템학회 학술대회 Vol.2012 No.-

        HANARO(High Flux Advanced Neutron Application Reactor) design was started from 1985 and was constructed in 1995 by KAERI(Korea Atomic Energy Research Institute). The document control book was written by hand and hard-copy was kept at that time. JRTR(Jordan Research and Training Reactor) was contracted for export to Jordan March 2010 by KAERI Consortium. This contract is a matter for congratulation of export of first made-in-Korea nuclear system. NRR(New Research Reactor) officially launched in April 2012. The document control system is controlled by PPM (Project Procedure Manual) and QAP(Quality Assurance Procedure) and ANSIM(KAERI Advanced Nuclear Safety Information Management) was built for JRTR. ANSIM system consists of the document management holder, document container holder and organization management holder. This system was registered about 2,000 design output like DDA(Document Distribution for Agreement), design documents, design drawings and project manger memorandum. The system design for JRTR was smoothly performed using ANSIM. NRR set to separated exclusive system that was based on JRTR ANSIM. Folder of nuclear laws, codes and standards was added to that system and those will be useful during designing. The project and quality assurance plans and procedures has been managed from design documents separately. Above all things, independent review and ALARA(As Low As Reasonably Achievable) review were operated for nuclear safety at ANSIM. And cover and body of design document were combined and backup system was established. After then, system upgrade and operation pursue the effect analysis by design change for accomplishment of the research reactor project.

      • KCI등재

        하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석

        박용철(Y.C. Park),우상익(S.I. Wu) 한국전산유체공학회 2005 한국전산유체공학회지 Vol.10 No.2

        The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve meters (12 m) depth of the reactor pool and cooled by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and comes out from the outlet of chimney. A fission moly guide tube is extended from the reactor core to the top of the reactor chimney for easily loading a fission moly target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper describes an analytical analysis that is the study of the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, reduced to about fourteen kilogram per second (14 kg/s) from the original flow rate of sixteen point three kilogram per second (16.3 kg/s) did not show the guide tube jet.

      • KCI등재

        ANSIM 문서관리시스템에서 연구로사업 문서흐름

        박국남(Kook-Nam Park),김권호(Kwon-Ho Kim),김준연(Jun-Yeon Kim),우상익(Sang-ik Wu),오수열(Soo-Youl Oh) 한국산업경영시스템학회 2013 한국산업경영시스템학회지 Vol.36 No.4

        A document control system (DCS), ANSIM (KAERI Advanced Nuclear Safety Information Management) was designed for the purpose of documents preparation, review, and approvement for JRTR (Jordan Research and Training Reactor) project. The ANSIM system consists of a document management, document container, project management, organization management, and EPC (Engineering, Procurement and Construction) document folder. The document container folder run after specific contents, a revision history of the design documents and drawings are issued in KAERI. The EPC document work-scope is a registry for incoming documents in ANSIM, the assignment of a manager or charger, document review, preparing and outgoing PM memorandum as attached the reviewed paper. On the other hand, KAERI is aiming another extra network server for the NRR (New Research Reactor) by the end of this year. In conclusion, it is the first, computation system of DCS that provides document form, document number, and approval line. Second, ANSIM increases the productivity of performance that can be recognized the document work-flow of oneself and all participants. Finally, a plenty of experience and knowledge of nuclear technology can be transmitted to next generation for the design, manufacturing, testing, installation, and commissioning. Though this, ANSIM is expected to allow the export of a knowledge and information system as well as a research reactor.

      • KCI등재

        요르단연구로건설사업 문서관리시스템 구축

        박국남(Kook-Nam Park),고영철(Young-Cheol Ko),우상익(Sang-Ik Wu),오수열(Soo-Youl Oh),이두정(Doo-Jeong Lee) 한국산업경영시스템학회 2011 한국산업경영시스템학회지 Vol.34 No.4

        The Project of Jordan Research and Training Reactor (JRTR) officially launched in Aug. 2010. JRTR is the first made-in-Korea nuclear system to be built abroad by year 2015, and Korea Atomic Energy Research Institute (KAERI) is responsible for the design of major systems including the reactor core. While the PDCS (Project Document Control System) being operated by EPC company controls all the documents of the whole Project, KAERI is supposed to have its own system for KAERI documents. Meeting such a need, KAERI has implemented a document control for the JRTR Project into already existing ANSIM (KAERI Advanced Nuclear Safety Information Management) system. The documents of JRTR project to be controlled are defined in the PPM (Project Procedures Manual), QAP (Quality Assurance Procedure) and PEP (Project Execution Program). The ANSIM consists of the document management holder, document container holder and organization management holder. The document management holder, which is the most important part of ANSIM-JRTR, consists of the DDA (Document Distribution for Agreement), IOC (Inter-office Correspondence), PM Memo. (Project Manager Memorandum) and cover sheets of design documents. Other materials such as meeting minutes, sub-department materials and design information materials are stored in an independent COP (Community of Practice). This established computerized document control system, ANSIM, could lessen a burden for project management team and enhance the productivity as well.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼