RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Systems of mechanized and reactive droplets powered by multi-responsive surfactants

        Yang, Zhijie,Wei, Jingjing,Sobolev, Yaroslav I.,Grzybowski, Bartosz A. Macmillan Publishers Limited, part of Springer Nat 2018 Nature Vol.553 No.7688

        Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

      • SCOPUSKCI등재SCIE

        Stem cells from human exfoliated deciduous teeth attenuate trigeminal neuralgia in rats by inhibiting endoplasmic reticulum stress

        Yang, Zhijie,Wang, Chun,Zhang, Xia,Li, Jing,Zhang, Ziqi,Tan, Zhao,Wang, Junyi,Zhang, Junyang,Bai, Xiaofeng The Korean Pain Society 2022 The Korean Journal of Pain Vol.35 No.4

        Background: The treatment of trigeminal neuralgia remains a challenging issue. Stem cells from human exfoliated deciduous teeth (SHED) provide optimized therapy for chronic pain. This study aimed to investigate the mechanisms underlying the attenuation of trigeminal neuralgia by SHED. Methods: Trigeminal neuralgia was induced by chronic constriction injury of the infraorbital nerve. The mechanical threshold was assessed after model establishment and local SHED transplantation. Endoplasmic reticulum (ER) morphology and Caspase12 expression in trigeminal ganglion (TG) was evaluated as well. BiP expression was observed in PC12 cells induced by tunicamycin. Results: The local transplantation of SHED could relieve trigeminal neuralgia in rats. Further, transmission electron microscopy revealed swelling of the ER in rats with trigeminal neuralgia. Moreover, SHED inhibited the tunicamycin-induced up-regulated expression of BiP mRNA and protein in vitro. Additionally, SHED decreased the up-regulated expression of Caspase12 mRNA and protein in the TG of rats caused by trigeminal neuralgia after chronic constriction injury of the infraorbital nerve mode. Conclusions: This findings demonstrated that SHED could alleviate pain by relieving ER stress which provide potential basic evidence for clinical pain treatment.

      • KCI등재

        Advanced glycation end products promote meniscal calcification by activating the mTOR-ATF4 positive feedback loop

        Yang Sheng,Xie JiaJun,Pan ZhiJie,Guan HongMei,Tu YueSheng,Ye YuanJian,Huang ShouBin,Fu ShiQiang,Li KangXian,Huang ZhiWei,Li XiaoQi,Shi ZhanJun,Li Le,Zhang Yang 생화학분자생물학회 2024 Experimental and molecular medicine Vol.56 No.-

        The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.

      • SCIESCOPUSKCI등재

        A New Control Strategy for Input Voltage Sharing in Input Series Output Independent Modular DC-DC Converters

        Yang, Wei,Zhang, Zhijie,Yang, Shiyan The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.3

        Input series output independent (ISOI) dc-dc converter systems are suitable for high voltage input and multiple output applications with low voltage rating switches. This paper proposes a novel control strategy consisting of one output voltage regulating (OVR) control loop and n-1 (n is the number of modules in the ISOI system) input voltage sharing (IVS) control loops. An ISOI system with the proposed control strategy can be applied to applications where the output loads of each module are the same. Under these conditions, IVS can be achieved and output voltages copying can be realized in an ISOI system. In this control strategy there is only one controller for each module and the design process of the control loops is simple. Since no central controller is needed in the system, modularity of the system is improved. The operation principle of the new control strategy is introduced and the control effect is simulated. Then the output power and voltage characteristics of an ISOI system under this new control strategy are analyzed. The stability of the proposed control strategy is explored base on a Hurwitz criterion, and the design guide line of the control strategy is given. A two module ISOI system prototype is fabricated and tested in the laboratory. Experimental results verify the effectiveness of the proposed control strategy.

      • KCI등재

        A New Control Strategy for Input Voltage Sharing in Input Series Output Independent Modular DC-DC Converters

        Wei Yang,Zhijie Zhang,Shiyan Yang 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.3

        Input series output independent (ISOI) dc-dc converter systems are suitable for high voltage input and multiple output applications with low voltage rating switches. This paper proposes a novel control strategy consisting of one output voltage regulating (OVR) control loop and n-1 (n is the number of modules in the ISOI system) input voltage sharing (IVS) control loops. An ISOI system with the proposed control strategy can be applied to applications where the output loads of each module are the same. Under these conditions, IVS can be achieved and output voltages copying can be realized in an ISOI system. In this control strategy there is only one controller for each module and the design process of the control loops is simple. Since no central controller is needed in the system, modularity of the system is improved. The operation principle of the new control strategy is introduced and the control effect is simulated. Then the output power and voltage characteristics of an ISOI system under this new control strategy are analyzed. The stability of the proposed control strategy is explored base on a Hurwitz criterion, and the design guide line of the control strategy is given. A two module ISOI system prototype is fabricated and tested in the laboratory. Experimental results verify the effectiveness of the proposed control strategy.

      • Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

        Jinhu Cai,Zhijie Yang,Chunjie Wang,Jianzhong Ding 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.81 No.3

        Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

      • KCI등재

        Transcriptional reprogramming caused by cold acclimation in Meloidogyne incognita eggs

        Yuanzheng Wang,Zhijie Chen,Yiwei Yang,Feng Zhang 한국유전학회 2021 Genes & Genomics Vol.43 No.5

        Background Egg hatching in Meloidogyne incognita is a highly regulated developmental event and is strictly correlated with temperature. It has been demonstrated that exposure of M. incognita eggs to low temperature seriously afects their embryonic development. On the other hand, clear evidence has shown that M. incognita is able to overwinter at subzero soil temperatures in certain open felds. Therefore, subtle physiological and genetic adaptations may occur in M. incognita to minimize freezing injuries. Objective A growing body of evidence indicates that cold acclimation plays a large role in an individual organism’s ability to cope with freezing-induced cellular damage. Given the decreasing temperatures in late autumn or early winter, we hypothesize that natural cold acclimation occurring during these periods may assist M. incognita in overwintering. Methods Transcriptomic analysis and functional enrichment analyses were used to identify and annotate diferentially expressed genes (DEGs) in acclimated eggs. The expression of DEGs involved in signal transduction and protein assembly was subsequently validated by reverse transcription quantitative PCR (RT-qPCR). Results Relatively long-term preacclimation at 4 °C signifcantly accelerated the hatching of M. incognita eggs that were subjected to freezing at − 1 °C. Using a transcriptomic approach, we further identifed 686 and 460 up- and downregulated transcripts, respectively, in pre-cold-acclimated eggs. Additionally, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology annotations for functional enrichment analyses of the diferentially expressed genes (DEGs). Conclusion The phenomenon in which M. incognita safely overwinters at subzero soil temperatures in certain areas may be attributed to the natural cold acclimation occurring in late autumn. Here, the identifcation of DEGs between acclimated and nonacclimated eggs will provide us with promising directions for future studies on the mechanisms of M. incognita freezing tolerance.

      • KCI등재

        Effect of Germination and Incubation on Zn, Fe, and Ca Bioavailability Values of Soybeans (Glycine max L.) and Mung Beans (Vigna radiate L.)

        Xinkun Wang,Runqiang Yang,Xiaolin Jin,Zhijie Chen,Yulin Zhou,Zhenxin Gu 한국식품과학회 2015 Food Science and Biotechnology Vol.24 No.5

        Phytase/phosphatase activities, the phytic acid content, and Zn, Fe, and Ca bioavailability values of 4-d-germinated soybeans and mung beans were investigated. Phytase and phosphatase activities of germinated soybeans and mung beans both increased, compared with raw beans. The phytic acid contents declined in germinated soybeans by 57.5% and in mung beans by 76.0%. Zn and Fe bioavailability values increased in germinated beans and Ca bioavailability decreased. For incubation, the highest bioavailability values of Zn, Fe, and Ca, respectively, were achieved using an exogenous phytase treatment in mung beans (47.6, 44.6, and 51.5%). Soybeans exhibited values of 64.7, 60.6, and 47.9%, respectively, after a combined treatment with endogenous and exogenous phytases. Germination improves Zn and Fe bioavailability values of beans by increasing enzyme activity, but is time-consuming. Incubation is more efficient for improvement of Zn, Fe, and Ca bioavailability values in a short period of time.

      • KCI등재

        Spatial analysis of tuberculosis treatment outcomes in Shanghai: implications for tuberculosis control

        Zhang Jing,Shen Xin,Yang Chongguang,Chen Yue,Guo Juntao,Wang Decheng,Zhang Jun,Lynn Henry,Hu Yi,Pan Qichao,Zhang Zhijie 한국역학회 2022 Epidemiology and Health Vol.44 No.-

        OBJECTIVES: Tuberculosis (TB) treatment outcomes are a key indicator in the assessment of TB control programs. We aimed to identify spatial factors associated with TB treatment outcomes, and to provide additional insights into TB control from a geographical perspective.METHODS: We collected data from the electronic TB surveillance system in Shanghai, China and included pulmonary TB patients registered from January 1, 2009 to December 31, 2016. We examined the associations of physical accessibility to hospitals, an autoregression term, and random hospital effects with treatment outcomes in logistic regression models after adjusting for demographic, clinical, and treatment factors.RESULTS: Of the 53,475 pulmonary TB patients, 49,002 (91.6%) had successful treatment outcomes. The success rate increased from 89.3% in 2009 to 94.4% in 2016. The successful treatment outcome rate varied among hospitals from 78.6% to 97.8%, and there were 12 spatial clusters of poor treatment outcomes during the 8-year study period. The best-fit model incorporated spatial factors. Both the random hospital effects and autoregression terms had significant impacts on TB treatment outcomes, ranking 6th and 10th, respectively, in terms of statistical importance among 14 factors. The number of bus stations around the home was the least important variable in the model.CONCLUSIONS: Spatial autocorrelation and hospital effects were associated with TB treatment outcomes in Shanghai. In highly-integrated cities like Shanghai, physical accessibility was not related to treatment outcomes. Governments need to pay more attention to the mobility of patients and different success rates of treatment among hospitals.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼