RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

        Zhi Hao Wang,Yan Wei Xu,Hui Gao,Zheng Qing Chen,Kai Xu,Shun Bo Zhao 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.23 No.6

        Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

      • Regulatory Network of MicroRNAs, Host Genes, Target Genes and Transcription Factors in Human Esophageal Squamous Cell Carcinoma

        Wang, Tian-Yan,Xu, Zhi-Wen,Wang, Kun-Hao,Wang, Ning Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.9

        Abnormally expressed microRNAs (miRNAs) and genes have been found to play key roles in esophageal squamous cell carcinoma (ESCC), but little is known about the underlying mechanisms. The aim of this paper was to assess inter-relationships and the regulatory mechanisms of ESCC through a network-based approach. We built three regulatory networks: an abnormally expressed network, a related network and a global network. Unlike previous examples, containing information only on genes or miRNAs, the prime focus was on relationships. It is worth noting that abnormally expressed network emerged as a fault map of ESCC. Theoretically, ESCC might be treated and prevented by correcting the included errors. In addition, the predicted transcription factors (TFs) obtained by the P-match method also warrant further study. Our results may further guide gene therapy researchers in the study of ESCC.

      • KCI등재

        Node Incentive Mechanism in Selfish Opportunistic Network

        ( Hao-tian Wang ),( Zhi-gang Chen ),( Jia Wu ),( Lei-lei Wang ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.3

        In opportunistic network, the behavior of a node is autonomous and has social attributes such as selfishness.If a node wants to forward information to another node, it is bound to be limited by the node's own resources such as cache, power, and energy.Therefore, in the process of communication, some nodes do not help to forward information of other nodes because of their selfish behavior. This will lead to the inability to complete cooperation, greatly reduce the success rate of message transmission, increase network delay, and affect the overall network performance. This article proposes a hybrid incentive mechanism (Mim) based on the Reputation mechanism and the Credit mechanism.The selfishness model, energy model (The energy in the article exists in the form of electricity) and transaction model constitute our Mim mechanism. The Mim classifies the selfishness of nodes and constantly pay attention to changes in node energy, and manage the wealth of both sides of the node by introducing the Central Money Management Center. By calculating the selfishness of the node, the currency trading model is used to differentiate pricing of the node's services. Simulation results show that by using the Mim, the information delivery rate in the network and the fairness of node transactions are improved. At the same time, it also greatly increases the average life of the network

      • Preventive Effect of Actinidia Valvata Dunn Extract on N-methyl-N'-nitro-N-nitrosoguanidine-induced Gastrointestinal Cancer in Rats

        Wang, Xia,Liu, Hao,Wang, Xin,Zeng, Zhi,Xie, Li-Qun,Sun, Zhi-Guang,Wei, Mu-Xin Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.15

        Purpose: This study was conducted to assess the preventive effect of Actinidia valvata Dunn (AVD) extract on an animal model of gastrointestinal carcinogenesis on the basis of changes in tumor incidence, cell proliferation, and apoptosis. Materials and Methods: Seventy-five male Wistar rats were divided into five different treatment groups with 15 rats in each group. Group I was given normal feed, whereas Groups II to IV were treated with 10% sodium chloride in the first six weeks and 100ug/mL of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in drinking water for 24 weeks. Group II was then given normal feed, whereas Group III was given AVD extract (0.24g/kg/day) for 12 weeks. Group IV was given AVD extract from the first week to the 36th week, whereas Group V was treated with AVD extract alone for 36 weeks. All rats were sacrificed at the end of the 36-week experiment and assessed for the presence of gastrointestinal tumors. The occurrence of cancer was evaluated by histology. Bax, Bcl-2, Caspase-3, and cyclinD1 were determined by immunohistochemical staining and Western blotting. Results: The incidences of gastric cancer were 0% in Group I, 73.3% in Group II, 33.3% in Group III, 26.7% in Group IV, and 0% in Group V. Bcl-2 and cyclinD1 expression was decreased in AVD extract treated groups, whereas Bax and Caspase-3 expression was increased. Comparison with group II revealed significant differences (p<0.01). Conclusions: AVD extract exhibits an obvious preventive effect on gastrointestinal carcinogenesis induced by MNNG in rats through the regulation of cell proliferation and apoptosis.

      • KCI등재

        Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

        Zhi-hao Wang,Hui Gao,Yan-wei Xu,Zheng-qing Chen,Hao Wang 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.24 No.1

        Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

      • KCI등재

        RON and MET Co-overexpression Are Significant Pathological Characteristics of Poor Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Triple-Negative Breast Cancer

        Tian-Hao Weng,Min-Ya Yao,Xiang-Ming Xu,Chen-Yu Hu,Shu-Hao Yao,Yi-Zhi Liu,Zhi-Gang Wu,Tao-Ming Tang,Pei-Fen Fu,Ming-Hai Wang,Hang-Ping Yao 대한암학회 2020 Cancer Research and Treatment Vol.52 No.3

        Purpose Triple-negative breast cancer (TNBC) is highly malignant and has poor prognosis and a high mortality rate. The lack of effective therapy has spurred our investigation of new targets for treating this malignant cancer. Here, we identified RON (macrophage-stimulating 1 receptor) and MET (MET proto-oncogene, receptor tyrosine kinase) as a prognostic biomarker and therapeutic targets for potential TNBC treatment. Materials and Methods We analyzed RON and MET expression in 187 primary TNBC clinical samples with immunohistochemistry. We validated the targeted therapeutic effects of RON and MET in TNBC using three tyrosine kinase inhibitors (TKIs): BMS-777607, INCB28060, and tivantinib. The preclinical therapeutic efficacy of the TKIs was mainly estimated using a TNBC xenograft model. Results Patients with TNBC had widespread, abnormal expression of RON and MET. There was RON overexpression, MET overexpression, and RON and MET co-overexpression in 63 (33.7%), 63 (33.7%), and 43 cases (23.0%), respectively, which had poor prognosis and short survival. In vivo, the TKI targeting RON ant MET inhibited the activation of the downstream signaling molecules, inhibited TNBC cell migration and proliferation, and increased TNBC cell apoptosis; in the xenograft model, they significantly inhibited tumor growth and shrank tumor volumes. The TKI targeting RON and Met, such as BMS-777607 and tivantinib, yielded stronger anti-tumor effects than INCB28060. Conclusion RON and MET co-overexpression can be significant pathological characteristics in TNBC for poor prognosis. TKIs targeting RON and MET have stronger drug development potential for treating TNBC.

      • Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

        Qi’ang Wang,Zhi-Jun Liu,Hao-Bo Wang,Zhanguo Ma,Yi-Qing Ni,Jian Jiang,Rui Sun,Hao-Wei Zhu 국제구조공학회 2023 Smart Structures and Systems, An International Jou Vol.32 No.4

        Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof- sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼