RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        White-Matter Hyperintensities and Lacunar Infarcts Are Associated with an Increased Risk of Alzheimer’s Disease in the Elderly in China

        Shuai Ye,Shuyang Dong,Jun Tan,Le Chen,Hai Yang,Yang Chen,Zeyan Peng,Yingchao Huo,Juan Liu,Mingshan Tang,Yafei Li,Huadong Zhou,Yong Tao 대한신경과학회 2019 Journal of Clinical Neurology Vol.15 No.1

        Background and Purpose This study investigated the contribution of white-matter hyperintensities (WMH) and lacunar infarcts (LI) to the risk of Alzheimer’s disease (AD) in an elderly cohort in China. Methods Older adults who were initially cognitively normal were examined with MRI at baseline, and followed for 5 years. WMH were classified as mild, moderate, or severe, and LI were classified into a few LI (1 to 3) or many LI (≥4). Cognitive function was assessed using the Mini Mental State Examination and the Activities of Daily Living scale. Results Among the 2,626 subjects, 357 developed AD by the end of the 5-year follow-up period. After adjusting for age and other potential confounders, having only WMH, having only LI, and having both WMH and LI were associated with an increased risk of developing AD compared with having neither WMH nor LI. Moderate and severe WMH were associated with an increased risk of developing AD compared with no WMH. Furthermore, patients with many LI had an increased risk of developing AD compared with no LI. Conclusions Having moderate or severe WMH and many LI were associated with an increased risk of developing AD, with this being particularly striking when both WMH and LI were present.

      • SCISCIESCOPUS

        Microstructure and property evolution of diamond-like carbon films co-doped by Al and Ti with different ratios

        Zhou, Yong,Guo, Peng,Sun, Lili,Liu, Linlin,Xu, Xiaowei,Li, Wenxian,Li, Xiaowei,Lee, Kwang-Ryeol,Wang, Aiying Elsevier Sequoia 2019 Surface & coatings technology Vol.361 No.-

        <P><B>Abstract</B></P> <P>Diamond-like carbon (DLC) films with weak carbide metal Al and carbide metal Ti co-doping (Al/Ti-DLC) were prepared by a hybrid ion beam deposition system. The atomic ratios of doped Al to Ti were tailored via designing the special Al/Ti combined sputtering target. The composition, microstructure, roughness, residual stress, hardness, toughness, and tribological behaviors of the deposited films were systematically evaluated to explore the dependence of structural properties on Al/Ti ratios. Results indicated that the high-throughput preparation of DLC films with different Al/Ti atomic ratios was achieved by tailoring the sputtering target and process parameters without the difference in both the film thickness and total Al/Ti content. With the Al/Ti ratios in the films decreased from 8.8 to 3.0, the residual stress, hardness, and toughness of Al/Ti-DLC films increased obviously, originating from the increased fraction of titanium carbide and the reduced Al content. However, the coefficient of friction and wear rate with decreasing the Al/Ti ratio were obviously improved, which was related with the transformation of underlying friction mechanism from the sliding interface graphitization to dangling bond-passivation. The present results not only suggest a high-throughput method to fabricate co-doped DLC films, but also promote the scientific understanding and engineering application of DLC films with high performance.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Ti/Al co-doped diamond-like carbon films were fabricated by a hybrid ion beam method. </LI> <LI> Different Al/Ti ratios were successfully achieved at one time using designed target. </LI> <LI> Al/Ti ratios had no effect on the chemical state of co-doped Ti and Al atoms. </LI> <LI> The mechanical and tribological properties were strongly dependent on Ti/Al ratios. </LI> <LI> Different friction mechanisms were observed with Al/Ti ratios ranged from 8.8 to 3.0. </LI> </UL> </P>

      • Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries

        Cui, Lianmeng,Zhou, Limin,Zhang, Kai,Xiong, Fangyu,Tan, Shuangshuang,Li, Maosheng,An, Qinyou,Kang, Yong-Mook,Mai, Liqiang Elsevier 2019 Nano energy Vol.65 No.-

        <P><B>Abstract</B></P> <P>Benefiting from high volumetric energy density and generally dendrite-free growth of Mg metal, rechargeable magnesium batteries (MBs) become a promising next-generation energy storage system. Organic electrode materials, with characteristic of sustainable resource and flexible structure, have been widely studied in alkali metal ion batteries, but are rarely reported in MBs. Herein, we demonstrate that 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) serves as a cathode material for MBs in non-aqueous system, which realizes a fast diffusion kinetics and remarkable Mg-storage performance through a salt-dissolution inhibition approach for the electrolyte. The PTCDA exhibits a reversible capacity of 126 mAh g<SUP>−1</SUP> (at 200 mA g<SUP>−1</SUP>), excellent rate performance, and good cycling stability (100 mAh g<SUP>−1</SUP> even after 150 cycles). Furthermore, the evolution mechanism of the PTCDA electrode based on the transformation between carbonyl groups (CO) and enolate groups (C–O) is revealed by <I>ex-situ</I> phase characterization and functional group analysis. Besides, the dissolution inhibition of the PTCDA could also be realized through the incorporation of other soluble salt (KCl or NaCl) into all phenyl complex (APC) electrolyte, resulting in an enhanced cycling capacity. Considering the designable configuration of the organic materials, this work would pave way for their utilization on multi-valent ion batteries and provide efficient strategy to realize high voltage and satisfied cycle life.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The magnesium anode in organic system was realized combined with the solubility inhibition of the host materials. </LI> <LI> Compared with other inorganic cathode materials, the PTCDA is eligible to offset the defect of Mg<SUP>2+</SUP> transport dynamics. </LI> <LI> Compared with other Mg-storage materials reported, the PTCDA demonstrates a high working voltage plateau and a small polarization. </LI> <LI> The electrochemical mechanism of the PTCDA is proved to be the transformation between carbonyl groups and enolate groups. </LI> <LI> The incorporation of dissolvable salts inhibited the dissolution of the PTCDA. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review

        Wang, Shengsen,Zhao, Mingyue,Zhou, Min,Li, Yuncong C.,Wang, Jun,Gao, Bin,Sato, Shinjiro,Feng, Ke,Yin, Weiqin,Igalavithana, Avanthi Deshani,Oleszczuk, Patryk,Wang, Xiaozhi,Ok, Yong Sik Elsevier 2019 Journal of hazardous materials Vol.373 No.-

        <P><B>Abstract</B></P> <P>The promising characteristics of nanoscale zero-valent iron (nZVI) have not been fully exploited owing to intrinsic limitations. Carbon-enriched biochar (BC) has been widely used to overcome the limitations of nZVI and improve its reaction with environmental pollutants. This work reviews the preparation of nZVI/BC nanocomposites; the effects of BC as a supporting matrix on the nZVI crystallite size, dispersion, and oxidation and electron transfer capacity; and its interaction mechanisms with contaminants. The literature review suggests that the properties and preparation conditions of BC (e.g., pore structure, functional groups, feedstock composition, and pyrogenic temperature) play important roles in the manipulation of nZVI properties. This review discusses the interactions of nZVI/BC composites with heavy metals, nitrates, and organic compounds in soil and water. Overall, BC contributes to the removal of contaminants because it can attenuate contaminants on the surface of nZVI/BC; it also enhances electron transfer from nZVI to target contaminants owing to its good electrical conductivity and improves the crystallite size and dispersion of nZVI. This review is intended to provide insights into methods of optimizing nZVI/BC synthesis and maximizing the efficiency of nZVI in environmental cleanup.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Aggregation and passivation of nZVI can be alleviated by surfactants and doping methods. </LI> <LI> BC hinders corrosion and improves the dispersion and electron transfer of nZVI. </LI> <LI> Properties of nZVI depend on those of the BC, feedstock and pyrogenic temperature. </LI> <LI> BC enhances electron transfer from nZVI to the contaminants due to the presence of quinone and graphene moieties. </LI> <LI> nZVI/BC shows strong ability to remove HMs, nitrates, and organic contaminants in soil and water. </LI> </UL> </P>

      • SCIESCOPUS

        Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

        Li, Yong,Zhou, Hao,Dong, Zhenxing,Zhu, Weishen,Li, Shucai,Wang, Shugang Techno-Press 2018 Geomechanics & engineering Vol.14 No.3

        A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

      • KCI등재

        Experimental and numerical investigations on the shear behavior of a jointed rock mass

        Yong Li,Hao Zhou,Weishen Zhu,Shucai Li,Jian Liu 한국지질과학협의회 2016 Geosciences Journal Vol.20 No.3

        The original forming process of the earth crust is companied with internal in situ stress, which gradually complicates while the earth crust evolves with geological conformation movements, leading to the generation of large amounts of faults, joints and fissures. These structural planes, to some extent, remarkably reduce the strengths of rock mass, including the shear behavior. In this paper, the authors report a physical model test on jointed rock mass under direct shear stress state and also adopt a numerical method, Discontinuous Deformation Analysis for Rock Failure (DDARF), to simulate the shear failure process, the variation of stresses and displacements of some key monitoring points. The comparative analysis demonstrates that the numerical results are favorable with those obtained in the physical model test. Therefore, it is concluded that the method of DDARF could effectively simulate the shear behavior of jointed rock mass. Furthermore, other than the original physical model test, the numerical models with echelon joints under different axial loadings are also simulated. The crack initiation, extension, coalescence, and the ultimate shear failure are totally investigated, after which the shear behavior of numerical models in different cases are comparatively analyzed.

      • Clinical Significance of Upregulation of mir-196a-5p in Gastric Cancer and Enriched KEGG Pathway Analysis of Target Genes

        Li, Hai-Long,Xie, Shou-Pin,Yang, Ya-Li,Cheng, Ying-Xia,Zhang, Ying,Wang, Jing,Wang, Yong,Liu, Da-Long,Chen, Zhao-Feng,Zhou, Yong-Ning,Wu, Hong-Yan Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.5

        Background: miRNAs are relatively recently discovered cancer biomarkers which have important implications for cancer early diagnosis, treatment and estimation of prognosis. Here we focussed on expression of mir-196a-5p in gastric cancer tissues and cell lines so as to analyse its significance for clinicopathologic characteristics and generate enriched KEGG pathways clustered by target genes for exploring its potential roles as a biomarker in gastric cancer. Materials and Methods: The expression of mir-196a-5p in poorly, moderate and well differentiated gastric cancer cell lines compared with GES-1 was detected by RT-qPCR, and the expression of mir-196a-5p in gastric cancer tissues comparing with adjacent non cancer tissues of 58 cases were also assessed by RT-qPCR. Subsequently, an analysis of clinical significance of mir-196a-5p in gastric cancer and enriched KEGG pathways was executed based on the miRWalk prediction database combined with bioinformatics tools DAVID 6.7 and Mirfocus 3.0. Results: RT-qPCR showed that mir-196a-5p was up-regulated in 6 poorly and moderate differentiated gastric cancer cell lines SGC-7901, MKN-45, MKN-28, MGC-803, BGC-823, HGC-27 compared with GES-1, but down-regulated in the highly differentiated gastric cancer cell line AGS. Clinical data indicated mir-196a-5p to beup-regulated in gastric cancer tissues (47/58). Overexpression of mir-196a-5p was associated with more extensive degree of lymph node metastasis and clinical stage (P < 0.05; x2 test). Enriched KEGG pathway analyses of predicted and validated targets in miRWalk combined with DAVID 6.7 and Mirfocus 3.0 showed that the targeted genes regulated by mir-196a-5p were involved in malignancy associated biology. Conclusions: Overexpression of mir-196a-5p is associated with lymph node metastasis and clinical stage, and enriched KEGG pathway analyses showed that targeted genes regulated by mir-196a-5p may contribute to tumorgenesis, suggesting roles as an oncogenic miRNA biomarker in gastric cancer.

      • KCI등재

        Effects of Pressure and Deposition Time on the Characteristics of In2Se3 Films Grown by Magnetron Sputtering

        Yong Yan,Shasha Li,Yufeng Ou,Yaxin Ji,Zhou Yu,Lian Liu,Chuanpeng Yan,Yong Zhang,Yong Zhao 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.6

        Crystalline In2Se3 films were fabricated by magnetron sputtering from a sintered In2Se3-compound target and the effects of the deposition parameters, including the working pressure and deposition time, on the phase composition, structure, morphology, and optical properties were clarified. Single-phase κ-In2Se3 was prepared at 4.0 Pa, but γ-In2Se3 was recognized when the working pressure was lower than 4.0 Pa. The optical transmittance of the films decreased to 45% and the optical band gap varied from 2.9 to 2.0 eV with increasing film thickness from 80 to 967 nm. Metal-semiconductor-metal (MSM) photodetectors based on γ-In2Se3 thin films with various thicknesses were also fabricated. The result of photosensitivity research on such MSM photodetectors suggests that it may be impossible to fabricate wide-absorption-range MSM devices by just using a single material (γ-In2Se3) because of spatial potential fluctuations in the layers.

      • KCI등재

        Genetic Overlap in the Quantitative Resistance of Rice at the Seedling and Adult Stages to Xanthomonas oryzae pv. oryzae

        Yong-Li Zhou,Xue-Wen Xie,Mei-Rong Xu,Jin-Ping Zang,Ling-Hua Zhu,Jian-Long Xu,Zhi-Kang Li 한국식물학회 2012 Journal of Plant Biology Vol.55 No.2

        The genetic components responsible for the qualitative and quantitative resistance of rice to three Chinese races (C2, C4, and C5) of Xanthomonas oryzae pv. oryzae (Xoo)were investigated at the seedling and adult stages in two successive years in set of Lemont/Teqing cross introgression lines (ILs) in a Teqing background, to create a complete linkage map using 160 well-distributed SSR markers. Teqing was resistant to C2 and C4, but moderately susceptible to C5,whereas Lemont was susceptible to all three races. Highly significant correlations were detected among the resistance to different races at different developmental stages. A major gene (Xa4), 14 main-effect QTLs (M-QTLs), and 18 epistatic QTLs were identified in the two developmental stages over 2 years,and were largely responsible for the segregation of resistance in the ILs. In 2007, the Lemont alleles at all loci in the seedling stage, except QBbr10 to C4, increased lesion length (LL) or decreased resistance. The Teqing allele at the Xa4 locus acted as a resistance gene against C2 and C4, but acted as a M-QTL when its resistance was overcome by the virulent race C5. MQTLs showed a degree of race specificity and had a cumulative effect on resistance. Most M-QTLs (94%) consistently expressed resistance to the same race at the seedling and adult stages, indicating that a high degree of genetic overlap exists between Xoo resistance at both developmental stages in rice. Among the digenic interactions, most co-introgressed Lemont alleles at the two epistatic loci lead to significantly smaller LL with all three races, compared to other types of interacting alleles at both development stages. The results indicate that a high level of resistance may be achieved by the cumulative effect of multiple M-QTLs, including the residual effects of “defeated” major resistance genes and the epistatic effects of co-introgression from diverse susceptible varieties.

      • KCI등재

        JCAD deficiency attenuates activation of hepatic stellate cells and cholestatic fibrosis

        Li Xie,Hui Chen,Li Zhang,Yue Ma,Yuan Zhou,Yong-Yu Yang,Chang Liu,Yu-Li Wang,Ya-Jun Yan,Jia Ding,Xiao Teng,Qiang Yang,Xiu-Ping Liu,Jian Wu 대한간학회 2024 Clinical and Molecular Hepatology(대한간학회지) Vol.30 No.2

        Background/Aims: Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. Methods: Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. Results: In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. Conclusions: JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼