RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen athway in preeclampsia

        Xiang-Hong Xu,Yuanhui Jia,Xinyao Zhou,Dandan Xie,Xiaojie Huang,Linyan Jia,Qian Zhou,Qingliang Zheng,Xiangyu Zhou,Kai Wang,Li-Ping Jin 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        Preeclampsia is a pregnancy-specific disorder that is a major cause of maternal and fetal morbidity and mortality with a prevalence of 6–8% of pregnancies. Although impaired trophoblast invasion in early pregnancy is known to be closely associated with preeclampsia, the underlying mechanisms remain elusive. Here we revealed that lysyl oxidase (LOX) and LOX-like protein 2 (LOXL2) play a critical role in preeclampsia. Our results demonstrated that LOX and LOXL2 expression decreased in preeclamptic placentas. Moreover, knockdown of LOX or LOXL2 suppressed trophoblast cell migration and invasion. Mechanistically, collagen production was induced in LOX- or LOXL2-downregulated trophoblast cells through activation of the TGF-β1/Smad3 pathway. Notably, inhibition of the TGF-β1/Smad3 pathway could rescue the defects caused by LOX or LOXL2 knockdown, thereby underlining the significance of the TGF-β1/ Smad3 pathway downstream of LOX and LOXL2 in trophoblast cells. Additionally, induced collagen production and activated TGF-β1/Smad3 were observed in clinical samples from preeclamptic placentas. Collectively, our study suggests that the downregulation of LOX and LOXL2 leading to reduced trophoblast cell migration and invasion through activation of the TGF-β1/Smad3/collagen pathway is relevant to preeclampsia. Thus, we proposed that LOX, LOXL2, and the TGF-β1/Smad3/collagen pathway can serve as potential markers and targets for clinical diagnosis and therapy for preeclampsia.

      • KCI등재

        The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

        ( Xinyao Lu ),( Guangsheng Wang ),( Yue Feng ),( Song Liu ),( Xiaoman Zhou ),( Guocheng Du ),( Jian Chen ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.10

        Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this Nterminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼