RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

        Liao, Qiao,Guo, Zhen-wen,Duan, Xin-zhi,Yu, Jiang-tao,Liu, Ke-ke,Dong, Fang-yuan Techno-Press 2021 Advances in concrete construction Vol.12 No.6

        The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

      • KCI등재

        Genome-wide identification and resistance expression analysis of the NBS gene family in Triticum urartu

        Jing Liu,Linyi Qiao,Xiaojun Zhang,Xin Li,Haixian Zhan,Huijuan Guo,Jun Zheng,Zhijian Chang 한국유전학회 2017 Genes & Genomics Vol.39 No.6

        As the largest class of resistant genes, the nucleotide binding site (NBS) has been studied extensively at a genome-wide level in rice, sorghum, maize, barley and hexaploid wheat. However, no such comprehensive analysis has been conducted of the NBS gene family in Triticum urartu, the donor of the A genome to the common wheat. Using a bioinformatics method, 463 NBS genes were isolated from the whole genome of T. urartu, of which 461 had location information. The expansion pattern and evolution of the 461 NBS candidate proteins were analyzed, and 118 of them were duplicated. By calculating the lengths of the copies, it was inferred that the NBS resistance gene family of T. urartu has experienced at least two duplication events. Expression analysis based on RNA-seq data found that 6 genes were differentially expressed among Tu38, Tu138 and Tu158 in response to Blumeria graminis f.sp.tritici (Bgt). Following Bgt infection, the expression levels of these genes were up-regulated. These results provide critical references for further identification and analysis of NBS family genes with important functions.

      • KCI등재

        Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

        Ze-Yan Fan,Cui-Ping Miao,Xin-Guo Qiao,You-Kun Zheng,Hua-Hong Chen,You-Wei Chen,Li-Hua Xu,Li-Xing Zhao,Hui-Lin Guan 고려인삼학회 2016 Journal of Ginseng Research Vol.40 No.2

        Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

      • SCIESCOPUSKCI등재

        Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

        Miao, Cui-Ping,Mi, Qi-Li,Qiao, Xin-Guo,Zheng, You-Kun,Chen, You-Wei,Xu, Li-Hua,Guan, Hui-Lin,Zhao, Li-Xing The Korean Society of Ginseng 2016 Journal of Ginseng Research Vol.40 No.2

        Background: Rhizospheric fungi play an essential role in the plantesoil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequenceswas high, accounting for 12.9% and 5.5%, respectively. In total,113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

      • KCI등재

        Research on Contamination-Resistant SiO2 Optical Thin Films in a Vacuum Environment

        Wang Sheng-zhao,Nan Chun-juan,Qiao Jian-liang,Guo Xin-feng 한국물리학회 2020 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.77 No.1

        The Contamination resistance of SiO2 optical films prepared by using sol-gel method was investigated and improved in this research. FDTS (1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane) was used to modify SiO2 thin films. Fourier Transform Infrared Spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the components on surface of the SiO2 thin films. The optical properties and hydrophobicity were also measured. The results show that the SiO2 thin film modification with FDTS causes -OH groups to be replaced by organic groups containing fluorine. The transmittance peak of SiO2 thin film changes, and the surface contact angle of water droplets on the SiO2 film increases from 35° to 107° after surface modification with FTDS. After the SiO2 thin films had been put in a vacuum environment for 24 hours, the peak transmittance of the modified SiO2 film under the same conditions is reduced to 0.14%, which is less than 3.17% of the unmodified film. The peak transmittance of the modified SiO2 thin films is also improved.

      • KCI등재

        Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

        Cui-Ping Miao,Qi-Li Mi,Xin-Guo Qiao,You-Kun Zheng,You-Wei Chen,Li-Hua Xu,Hui-Lin Guan,Li-Xing Zhao 고려인삼학회 2016 Journal of Ginseng Research Vol.40 No.2

        Background: Rhizospheric fungi play an essential role in the plantesoil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequenceswas high, accounting for 12.9% and 5.5%, respectively. In total,113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

      • SCIESCOPUSKCI등재

        Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

        Fan, Ze-Yan,Miao, Cui-Ping,Qiao, Xin-Guo,Zheng, You-Kun,Chen, Hua-Hong,Chen, You-Wei,Xu, Li-Hua,Zhao, Li-Xing,Guan, Hui-Lin The Korean Society of Ginseng 2016 Journal of Ginseng Research Vol.40 No.2

        Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

      • SCIESCOPUSKCI등재

        Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

        ( Ping Lu ),( Ke Jiang ),( Ya-qiao Hao ),( Wan-ying Chu ),( Yu-dong Xu ),( Jia-yao Yang ),( Jia-le Chen ),( Guo-hong Zeng ),( Zhou-hang Gu ),( Hong-xin Zhao ) 한국미생물 · 생명공학회 2021 Journal of microbiology and biotechnology Vol.31 No.9

        Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼