RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl‑1 with yellow–green leaf color

        Tong‑Mei Gao,Shuang‑Ling Wei,Jing Chen,Yin Wu,Feng Li,Li‑Bin Wei,Chun Li,Yan‑Juan Zeng,Yuan Tian,Dong‑Yong Wang,Hai‑Yang Zhang 한국유전학회 2020 Genes & Genomics Vol.42 No.1

        Background Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops. Objective This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow–green leaf sesame mutant Siyl-1. Methods We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type. Results Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellowgreen mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group. Conclusion The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.

      • LiFePO<sub>4</sub> quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries

        Wang, Bo,Xie, Ying,Liu, Tong,Luo, Hao,Wang, Bin,Wang, Chunhui,Wang, Lei,Wang, Dianlong,Dou, Shixue,Zhou, Yu Elsevier 2017 Nano energy Vol.42 No.-

        <P><B>Abstract</B></P> <P>Due to the relatively slow, diffusion-controlled faradaic reaction mechanisms of conventional LiFePO<SUB>4</SUB> (LFP) materials, which is hard to deliver satisfied capacity for high rate applications. In this work, ultrafine LFP quantum dots (LFP-QDs) co-modified by two types of carbonaceous materials - amorphous carbon and graphitized conductive carbon (graphene) have been successfully synthesized through a novel microreactor strategy. Because of the very limited area constructed by the dual-carbon microreactor for the growth of LFP crystal, it's demension was furthest suppressed to a very small level (~ 6.5nm). Such a designed nano-composite possesses a large specific surface area for charge adsorption and abundant active sites for faradaic reactions, as well as ideal kinetic features for both electron and ion transport, and thus exhibits ultra-fast, surface-reaction-controlled lithium storage behavior, mimicking the pseudocapacitive mechanisms for supercapacitor materials, in terms of extraordinary rate capability (78mAhg<SUP>−1</SUP> at 200C) and remarkable cycling stability (~ 99% over 1000 cycles at 20C). On the other side, due to the quasi-2D structure of the synthesized LFP-QDs composite, which can be used as the basic unit to further fabricate free-standing film, aerogel and fiber electrode without the addition of binder and conductive agent for different practical applications. In addition, to deeper understand its electrochemical behavior, a combined experimental and density functional theoretical (DFT) calculation study is also introduced.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A general microreactor strategy has been developed for structure-optimized Li-contained electrode materials. </LI> <LI> Ultrafine LiFePO<SUB>4</SUB> quantum dots are first reported through the designed microreactor strategy. </LI> <LI> The synthesized G/LFP-QDs@C exhibits ultra-fast, surface-reaction-controlled Li storage behavior. </LI> <LI> A combined experimental and DFT calculation study is introduced to reveal the energy storage mechanism of G/LFP-QDs@C. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Ultrafine LiFePO<SUB>4</SUB> quantum dots (~ 6.5nm) co-modified by two types of carbonaceous materials - amorphous carbon and graphitized conductive carbon (graphene) have been successfully synthesized through a novel microreactor strategy, which exhibit ultra-fast, surface-reaction-controlled energy storage behavior, mimicking the pseudocapacitive mechanisms for supercapacitor materials, in terms of excellent rate capability and outstanding cycling stability.</P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        The Positive Association between Subclinical Hypothyroidism and Newly-Diagnosed Hypertension Is More Explicit in Female Individuals Younger than 65

        Xichang Wang,Haoyu Wang,Li Yan,Lihui Yang,Yuanming Xue,Jing Yang,Yongli Yao,Xulei Tang,Nanwei Tong,Guixia Wang,Jinan Zhang,Youmin Wang,Jianming Ba,Bing Chen,Jianling Du,Lanjie He,Xiaoyang Lai,Yanbo Li 대한내분비학회 2021 Endocrinology and metabolism Vol.36 No.4

        Background: Subclinical hypothyroidism (SCH) is the most common thyroid dysfunction, and its relationship with blood pressure(BP) has been controversial. The aim of the study was to analyze the association between SCH and newly-diagnosed hypertension. Methods: Based on data from the Thyroid disease, Iodine nutrition and Diabetes Epidemiology (TIDE) study, 49,433 euthyroid individuals and 7,719 SCH patients aged ≥18 years were enrolled. Patients with a history of hypertension or thyroid disease were excluded. SCH was determined by manufacturer reference range. Overall hypertension and stage 1 and 2 hypertension were diagnosedaccording to the guidelines issued by the American College of Cardiology/American Heart Association in 2017. Results: The prevalence of overall hypertension (48.7%), including stage 1 (28.9%) and 2 (19.8%) hypertension, increased significantly in SCH patients compared with euthyroid subjects. With elevated serum thyroid stimulating hormone (TSH) level, the hypertension prevalence also increased significantly from the euthyroid to different SCH subgroups, which was more profound in femalesor subjects aged <65 years. The age- and sex-specific regression analysis further demonstrated the same trends in the general population and in the 1:1 propensity matched population. Similarly, several BP components (i.e., systolic, diastolic, and mean arterial BP)were positively associated with TSH elevation, and regression analysis also confirmed that all BP components were closely relatedwith SCH in female subjects aged <65 years. Conclusion: The prevalence of hypertension increases for patients with SCH. SCH tends to be associated with hypertension and BPcomponents in females younger than 65 years.

      • KCI등재

        Enantioselective Esterification of Ibuprofen by a Novel Thermophilic Biocatalyst: APE1547

        Zhao Dan-tong,Xun Er-na,Wang Jia-xin,Wang Ren,Wei Xiao-fei,Wang Lei,Wang Zhi 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.4

        The enantioselective esterification of ibuprofen catalyzed by a novel thermophilic esterase (APE1547)from the archaeon Aeropyrum pernix K1 was successfully conducted in organic solvents. The effects of acyl acceptor,substrate ratio, organic solvent, temperature, and water activity were investigated. Under optimum conditions, the highest enantioselectivity (E = 38.1) was obtained with a higher enzyme activity (216.5 μmol/g/h). Celites were added into the reaction mixture to remove the water produced in the esterification. The reaction achieved its equilibrium in approximately 96 h with a conversion of 57 and 99%(ee) of the un-reacted (S)-ibuprofen obtained.

      • SCOPUSKCI등재

        Lentivirus-mediated RNA interference targeting E2F-1 inhibits human gastric cancer MGC-803 cell growth $in$ $vivo$

        Wang, Xiao-Tong,Xie, Yu-Bo,Xiao, Qiang Korean Society for Biochemistry and Molecular Bion 2011 Experimental and molecular medicine Vol.43 No.11

        The E2F-1 transcription factor is post-translationally modified and stabilized in response to various forms of DNA damage to regulate the expression of cell-cycle and pro-apoptotic genes. The sustained overexpression of E2F-1 is a characteristic feature of gastric cancer. In this study, we investigated the role of short hairpin RNA (shRNA) targeting E2F-1 gene on human gastric cancer MGC-803 cell growth $in$ $vivo$, and preliminarily revealed the mechanism. Thus, we constructed recombinant pGCSIL-GFP-shRNA-E2F-1 lentiviral vector to knock down E2F-1 expression in human gastric cancer MGC-803 cells $in$ $vivo$, and studied the effect of E2F-1 shRNA on growth of MGC-803 tumor and evaluated its treatment efficacy. Our data demonstrated that in a mouse model of established gastric cancer, intratumor injection of lentiviral shRNA targeting E2F-1 definitely decreased the endogenous E2F-1 mRNA and protein expression in MGC-803 tumor, and inhibited tumor growth and promoted tumor cells apoptosis. Moreover, we found that E2F-1 shRNA increased the expression of phosphatase and tensin homolog (PTEN), activated caspase-3 and caspase-9, and suppressed nuclear factor (NF)-${\kappa}B$ expression in tumor tissue as determined by reverse transcription (RT)-PCR and western blotting. In summary, shRNA targeting of E2F-1 can effectively inhibits human gastric cancer MGC-803 cell growth $in$ $vivo$ and may be a potential therapeutic strategy for gastric cancer.

      • KCI등재후보

        Photobiomodulation Facilitates Rat Cutaneous Wound Healing by Promoting Epidermal Stem Cells and Hair Follicle Stem Cells Proliferation

        Wang Tong,Song Yajuan,Yang Liu,Liu Wei,He Zhen’an,Shi Yi,Song Baoqiang,Yu Zhou 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.1

        Background: Cutaneous wound healing represents a common fundamental phenomenon requiring the participation of cells of distinct types and a major concern for the public. Evidence has confirmed that photobiomodulation (PBM) using near-infrared (NIR) can promote wound healing, but the cells involved and the precise molecular mechanisms remain elusive. Methods: Full-thickness skin defects with a diameter of 1.0 cm were made on the back of rats and randomly divided into the control group, 10 J, 15 J, and 30 J groups. The wound healing rate at days 4, 8, and 12 postoperatively was measured. HE and Masson staining was conducted to reveal the histological characteristics. Immunofluorescence staining was performed to label the epidermal stem cells (ESCs) and hair follicle stem cells (HFSCs). Western blot was performed to detect the expressions of proteins associated with ESCs and HFSCs. Cutaneous wound tissues were collected for RNA sequencing. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analysis was performed, and the hub genes were identified using CytoHubba and validated by qRT-PCR. Results: PBM can promote reepithelialization, extracellular matrix deposition, and wound healing, increase the number of KRT14+/PCNA+ ESCs and KRT15+/PCNA+ HFSCs, and upregulate the protein expression of P63, Krt14, and PCNA. Three hundred and sixty-six differentially expressed genes (DEGs) and 7 hub genes including Sox9, Krt5, Epcam, Cdh1, Cdh3, Dsp, and Pkp3 were identified. These DEGs are enriched in skin development, cell junction, and cadherin binding involved in cell–cell adhesion etc., while these hub genes are related to skin derived stem cells and cell adhesion. Conclusion: PBM accelerates wound healing by enhancing reepithelialization through promoting ESCs and HFSCs proliferation and elevating the expression of genes associated with stem cells and cell adhesion. This may provide a valuable alternative strategy to promote wound healing and reepithelialization by modulating the proliferation of skin derived stem cells and regulating genes related to cell adhesion. Background: Cutaneous wound healing represents a common fundamental phenomenon requiring the participation of cells of distinct types and a major concern for the public. Evidence has confirmed that photobiomodulation (PBM) using near-infrared (NIR) can promote wound healing, but the cells involved and the precise molecular mechanisms remain elusive. Methods: Full-thickness skin defects with a diameter of 1.0 cm were made on the back of rats and randomly divided into the control group, 10 J, 15 J, and 30 J groups. The wound healing rate at days 4, 8, and 12 postoperatively was measured. HE and Masson staining was conducted to reveal the histological characteristics. Immunofluorescence staining was performed to label the epidermal stem cells (ESCs) and hair follicle stem cells (HFSCs). Western blot was performed to detect the expressions of proteins associated with ESCs and HFSCs. Cutaneous wound tissues were collected for RNA sequencing. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes analysis was performed, and the hub genes were identified using CytoHubba and validated by qRT-PCR. Results: PBM can promote reepithelialization, extracellular matrix deposition, and wound healing, increase the number of KRT14+/PCNA+ ESCs and KRT15+/PCNA+ HFSCs, and upregulate the protein expression of P63, Krt14, and PCNA. Three hundred and sixty-six differentially expressed genes (DEGs) and 7 hub genes including Sox9, Krt5, Epcam, Cdh1, Cdh3, Dsp, and Pkp3 were identified. These DEGs are enriched in skin development, cell junction, and cadherin binding involved in cell–cell adhesion etc., while these hub genes are related to skin derived stem cells and cell adhesion. Conclusion: PBM accelerates wound healing by enhancing reepithelialization through promoting ESCs and HFSCs proliferation and elevating the expression of genes associated with stem cells and cell adhesion. This may provide a valuable alternative strategy to promote wound healing and reepithelialization by modulating the proliferation of skin derived stem cells and regulating genes related to cell adhesion.

      • Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria

        Tong, Tong,Chen, Si,Wang, Lianrong,Tang, You,Ryu, Jae Yong,Jiang, Susu,Wu, Xiaolin,Chen, Chao,Luo, Jie,Deng, Zixin,Li, Zhiqiang,Lee, Sang Yup,Chen, Shi National Academy of Sciences 2018 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.115 No.13

        <P><B>Significance</B></P><P>Phosphorothioate (PT) modification of the DNA sugar-phosphate backbone is an important microbial epigenetic modification governed by DndABCDE, which together with DndFGH, constitutes a restriction-modification system. We show that up to 45% of 1,349 identified bacterial <I>dnd</I> systems exhibit the form of solitary <I>dndABCDE</I> without the restriction counterparts of <I>dndFGH</I>. The combination of epigenomics, transcriptome analysis, and metabolomics suggests that in addition to providing a genetic barrier against invasive DNA, PT modification is a versatile player involved in the epigenetic control of gene expression and the maintenance of cellular redox homeostasis. This finding provides evolutionary and functional insights into this unusual epigenetic modification. Our results imply that PT systems might evolve similar to other epigenetic modification systems with multiple cellular functions.</P><P>The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of <I>dnd</I> systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial <I>dnd</I> systems: 1,349 bacterial <I>dnd</I> systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary <I>dndBCDE</I> gene cluster that lacks the <I>dndFGH</I> restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced <I>Pseudomonas fluorescens</I> to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.</P>

      • SCIESCOPUSKCI등재

        Frictional and Tensile Properties of Conducting Polymer Coated Wool and Alpaca Fibers

        Wang Lijing,Lin Tong,Wang Xungai,Kaynak Akif The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.3

        Wool and alpaca fibers were coated with polypyrrole by vapor-phase polymerisation method. The changes in frictional and tensile properties of the single fibers upon coating with the conductive polymer are presented. Coating a thin layer of polypyrrole on the alpaca and wool fibers results in a significant reduction in the fiber coefficient of friction, as the conducting polymer layer smooths the protruding edges of the fiber scales. It also reduces the directional friction effect of the fibers. Depending on the type of fiber, the coating may slightly enhance the tensile properties of the coated fibers.

      • KCI등재

        Knockdown of circ_0006872 alleviates CSE‑induced human bronchial epithelial cells injury in chronic obstructive pulmonary disease

        Wang Jieqiong,Li Zegeng,Zheng Lili,Tong Jiabing,Wang Chuanbo 한국응용생명화학회 2023 Applied Biological Chemistry (Appl Biol Chem) Vol.66 No.-

        Circular RNAs (circRNAs) have been reported to be related to the initiation and progression of chronic obstructive pulmonary disease (COPD) by affecting the function of human bronchial epithelial cells (HBECs). Here, we aimed to investigate the function and mechanism of circ_0006872 in regulating COPD process using cigarette smoke extract (CSE)-induced 16HBEC in vitro. The results showed that circ_0006872 was increased in smokers without or with COPD, especially in smokers with COPD. Also, its expression was dose-dependently up-regulated by CSE exposure in 16HBECs. Functionally, circ_0006872 knockdown dramatically attenuated CSE-evoked proliferation arrest, apoptosis, inflammatory response and oxidative stress in 16HBECs. Mechanistically, circ_0006872/miR-485-3p/cyclin-dependent kinase inhibitor 1B (CDKN1B) formed a competitive endogenous RNA (ceRNA) network. CDKN1B was increased and miR-485-3p was decreased in COPD patients and CSE-induced 16HBECs. MiR-485-3p overexpression or CDKN1B knockdown protected 16HBEC against CSE-induced 16HBEC injury mentioned above. Moreover, rescue experiments showed that circ_0006872 regulated CSE-induced 16HBEC injury via miR-485-3p/CDKN1B axis. Circ_0006872 silencing protected against CSE-induced bronchial epithelial cell injury via miR-485-3p/CDKN1B axis, suggesting the potential application of circ_0006872 in preventing cigarette smoke-induced COPD.

      • SCIESCOPUSKCI등재

        Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China

        Wang, Mian,Chen, Mingna,Yang, Zhen,Chen, Na,Chi, Xiaoyuan,Pan, Lijuan,Wang, Tong,Yu, Shanlin,Guo, Xingqi The Korean Society of Mycology 2017 Mycobiology Vol.45 No.4

        Peanut yield and quality are seriously affected by pod rot pathogens worldwide, especially in China in recent years. The goals of this study are to analyze the structure of fungal communities of peanut pod rot in soil in three peanut cultivars and the correlation of pod rot with environmental variables using 454 pyrosequencing. A total of 46,723 internal transcribed spacer high-quality sequences were obtained and grouped into 1,706 operational taxonomic units at the 97% similarity cut-off level. The coverage, rank abundance, and the Chao 1 and Shannon diversity indices of the operational taxonomic units were analyzed. Members of the phylum Ascomycota were dominant, such as Fusarium, Chaetomium, Alternaria, and Sordariomycetes, followed by Basidiomycota. The results of the heatmap and redundancy analysis revealed significant variation in the composition of the fungal community among the three cultivar samples. The environmental conditions in different peanut cultivars may also influence on the structure of the fungal community. The results of this study suggest that the causal agent of peanut pod rot may be more complex, and cultivars and environmental conditions are both important contributors to the community structure of peanut pod rot fungi.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼