RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells

        Liu, Jing Hua,Jeon, Min Ku,Lee, Ki Rak,Woo, Seong Ihl Royal Society of Chemistry 2010 Physical chemistry chemical physics Vol.12 No.46

        <P>A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.</P> <P>Graphic Abstract</P><P>A combinatorial library which had 27 different multi-layer compositions was quickly investigated for the methanol electro-oxidation reaction <I>via</I> an optical screening technique. <IMG SRC='http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/image/GA?id=c0cp00370k'> </P>

      • Fenofibrate Increases Radiosensitivity in Head and Neck Squamous Cell Carcinoma via Inducing G2/M Arrest and Apoptosis

        Liu, Jia,Ge, Yang-Yang,Zhu, Hong-Cheng,Yang, Xi,Cai, Jing,Zhang, Chi,Lu, Jing,Zhan, Liang-Liang,Qin, Qin,Yang, Yan,Yang, Yue-Hua,Zhang, Hao,Chen, Xiao-Chen,Liu, Zhe-Ming,Ma, Jian-Xin,Cheng, Hong-Yan,S Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.16

        Radiation therapy is an important treatment for head and neck squamous cell carcinoma (HNSCC). However, how to promote radiation sensitivity in HNSCC remains a challenge. This study aimed to investigate the radiosensitizing effects of fenofibrate on HNSCC and explore the underlying mechanisms. HNSCC cell lines CNE-2 and KB were subjected to ionizing radiation (IR), in the presence or absence of fenofibrate treatment. Cell growth and survival, apoptosis and cell cycle were evaluated. In addition, CNE-2 cells were xenografted into nude mice and subjected to IR and/or fenofibrate treatment. The expression of cyclinB and CDK1 was detected by Western blotting. Our results showed that fenofibrate efficiently radiosensitized HNSCC cells and xenografts in mice, and induced apoptosis and G2/M arrest via reducing the activity of the CDK1/cyclinB1 kinase complex. These data suggest that fenofibrate could be a promising radiosensitizer for HNSCC radiotherapy.

      • KCI등재

        Sputum Metabolomic Profiling Reveals Metabolic Pathways and Signatures Associated With Inflammatory Phenotypes in Patients With Asthma

        Liu Ying,Zhang Xin,Zhang Li,Oliver Brian G,Wang Hong Guang,Liu Zhi Peng,Chen Zhi Hong,Wood Lisa,Hsu Alan Chen-Yu,Xie Min,McDonald Vanessa,Wan Hua Jing,Luo Feng Ming,Liu Dan,Li Wei Min,Wang Gang 대한천식알레르기학회 2022 Allergy, Asthma & Immunology Research Vol.14 No.4

        Purpose: The molecular links between metabolism and inflammation that drive different inflammatory phenotypes in asthma are poorly understood. We aimed to identify the metabolic signatures and underlying molecular pathways of different inflammatory asthma phenotypes. Methods: In the discovery set (n = 119), untargeted ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied to characterize the induced sputum metabolic profiles of asthmatic patients with different inflammatory phenotypes using orthogonal partial least-squares discriminant analysis (OPLS-DA), and pathway topology enrichment analysis. In the validation set (n = 114), differential metabolites were selected to perform targeted quantification. Correlations between targeted metabolites and clinical indices in asthmatic patients were analyzed. Logistic and negative binomial regression models were established to assess the association between metabolites and severe asthma exacerbations. Results: Seventy-seven differential metabolites were identified in the discovery set. Pathway topology analysis uncovered that histidine metabolism, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis were involved in the pathogenesis of different asthma phenotypes. In the validation set, 24 targeted quantification metabolites were significantly expressed between asthma inflammatory phenotypes. Finally, adenosine 5′-monophosphate (adjusted relative risk [adj RR] = 1.000; 95% confidence interval [CI] = 1.000–1.000; P = 0.050), allantoin (adj RR = 1.000; 95% CI = 1.000–1.000; P = 0.043) and nicotinamide (adj RR = 1.001; 95% CI = 1.000–1.002; P = 0.021) were demonstrated to predict severe asthma exacerbation rates. Conclusions: Different inflammatory asthma phenotypes have specific metabolic profiles in induced sputum. The potential metabolic signatures may identify therapeutic targets in different inflammatory asthma phenotypes.

      • SCISCIESCOPUS

        Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats.

        Liu, Wei Jing,Xie, Shu Hua,Liu, Yu Ning,Kim, Won,Jin, Heung Yong,Park, Sung Kwang,Shao, Yi Ming,Park, Tae Sun Williams Wilkins 2012 The Journal of Pharmacology and Experimental Thera Vol.340 No.2

        <P>Dipeptidyl peptidase (DPP) IV inhibitors are probably beneficial for preventing diabetic complication and modulating glucagon-like peptide-1 receptor (GLP-1R) expression. The aim of this study was to determine whether the DPP IV inhibitor LAF237 (vildagliptin) has renoprotective qualities in streptozotocin-induced diabetic rats. Diabetic and nondiabetic rats were treated with an oral dose of 4 or 8 mg/kg/day LAF237 or placebo for 24 weeks, and renal injury was observed by light and electron microscopy. We also assessed DPP IV activity, active GLP-1 level, cAMP and 8-hydroxy-deoxyguanosine excretion, and GLP-1R, cleaved caspase 3, and transforming growth factor-β1 (TGF-β1) expression. LAF237 significantly decreased proteinuria, albuminuria, and urinary albumin/creatinine ratio, improved creatinine clearance, and dose-dependently inhibited interstitial expansion, glomerulosclerosis, and the thickening of the glomerular basement membrane in diabetic rats. It is noteworthy that LAF237 markedly down-regulated DPP IV activity and increased active GLP-1 levels, which probably prevented oxidative DNA damage and renal cell apoptosis by activating the GLP-1R and modulating cAMP. Renoprotection was also associated with a reduction in TGF-β1 overexpression. Our study suggests that DPP IV inhibitors may ameliorate diabetic nephropathy as well as reduce the overproduction of TGF-β1. The observed renoprotection is probably attributable to inhibition of DPP IV activity, mimicking of incretin action, and activation of the GLP-1R.</P>

      • KCI등재

        Continuous Conversion of Rice Starch Hydrolysate to 2-keto-D-gluconic Acid by Arthrobacter globiformis C224

        Wen-Hua Teng,Wen-Jing Sun,Bin Yu,Fengjie Cui,Jing-Ya Qian,Jingze Liu,Liang Wang,Xiang-Hui Qi,Hua Wei 한국생물공학회 2013 Biotechnology and Bioprocess Engineering Vol.18 No.4

        A continuous conversion process of rice starch hydrolysate to 2-keto-D-gluconic acid (2KGA) by Arthrobacter globiformis C224 was developed. Its feasibility for industrial application was also evaluated. Results showed that the initial cell concentration exceeding 1.25 g/L met the continuous 2KGA production at a stable dilution rate and media composition, while the dilution rate and feeding glucose concentration had a significant effect on 2KGA production performance. The optimal operating parameters were obtained as: 0.090/h of dilution rate and 171.0 g/L of feeding glucose concentration. Under these conditions, the steady state had a produced 2KGA concentration of 124.74 g/L, average volumetric productivity of 11.23 g/L/h,and yield of 0.97 g/g. In conclusion, continuous 2KGA production by the A. globiformis C224 strain would be a superior industrial process for the production of 2KGA in terms of its high 2KGA productivity and yield.

      • KCI등재

        Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats

        Ze-Hua Zhao,Feng-Zhi Xin,Yaqian Xue,Zhimin Hu,Yamei Han,Fengguang Ma,Da Zhou,Xiao-Lin Liu,Aoyuan Cui,Zhengshuai Liu,Yuxiao Liu,Jing Gao,Qin Pan,Yu Li,Jian-Gao Fan 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota. Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet. IPA induces the expression of tight junction proteins, such as ZO-1 and Occludin, and maintains intestinal epithelium homeostasis, leading to a reduction in plasma endotoxin levels. Interestingly, IPA inhibits NF-κB signaling and reduces the levels of proinflammatory cytokines, such as TNFα, IL-1β, and IL-6, in response to endotoxin in macrophages to repress hepatic inflammation and liver injury. Moreover, IPA is sufficient to inhibit the expression of fibrogenic and collagen genes and attenuate diet-induced NASH phenotypes. The beneficial effects of IPA on the liver are likely mediated through inhibiting the production of endotoxin in the gut. These findings suggest a protective role of IPA in the control of metabolism and uncover the gut microbiome and liver cross-talk in regulating the intestinal microenvironment and liver pathology via a novel dietary nutrient metabolite. IPA may provide a new therapeutic strategy for treating NASH.

      • SCIESCOPUSKCI등재

        mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

        Zhang, Jing,Jing, Jiong-Jie,Jia, Xia-Li,Qiao, Li-Ying,Liu, Jian-Hua,Liang, Chen,Liu, Wen-Zhong Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.5

        Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

      • KCI등재

        D-Galactose Induces a Mitochondrial Complex I Deficiency in Mouse Skeletal Muscle: Potential Benefits of Nutrient Combination in Ameliorating Muscle Impairment

        Liao Chang,Xin Liu,Jing Liu,Hua Li,Yanshen Yang,Jia Liu,Zihao Guo,Ke Xiao,Chen Zhang,Jiankang Liu,Xi Zhao-Wilson,Jiangang Long 한국식품영양과학회 2014 Journal of medicinal food Vol.17 No.3

        Accumulating research has shown that chronic D-galactose (D-gal) exposure induces symptoms similar to natural aging in animals. Therefore, rodents chronically exposed to D-gal are increasingly used as a model for aging and delay-of-aging pharmacological research. Mitochondrial dysfunction is thought to play a vital role in aging and age-related diseases; however, whether mitochondrial dysfunction plays a significant role in mice exposed to D-gal remains unknown. In the present study, we investigated cognitive dysfunction, locomotor activity, and mitochondrial dysfunction involved in D-gal exposure in mice. We found that D-gal exposure (125 mg/kg/day, 8 weeks) resulted in a serious impairment in grip strength in mice, whereas spatial memory and locomotor coordination remained intact. Interestingly, muscular mitochondrial complex I deficiency occurred in the skeletal muscle of mice exposed to D-gal. Mitochondrial ultrastructure abnormality was implicated as a contributing factor in D-gal-induced muscular impairment. Moreover, three combinations (A, B, and C) of nutrients applied in this study effectively reversed D-gal-induced muscular impairment. Nutrient formulas B and C were especially effective in reversing complex I dysfunction in both skeletal muscle and heart muscle. These findings suggest the following: (1) chronic exposure to D-gal first results in specific muscular impairment in mice, rather than causing general, premature aging; (2) poor skeletal muscle strength induced by D-gal might be due to the mitochondrial dysfunction caused by complex I deficiency; and (3) the nutrient complexes applied in the study attenuated the skeletal muscle impairment, most likely by improving mitochondrial function.

      • SCIESCOPUSKCI등재

        Ontogenetic Expression of Lpin2 and Lpin3 Genes and Their Associations with Traits in Two Breeds of Chinese Fat-tailed Sheep

        Jiao, Xiao-Li,Jing, Jiong-Jie,Qiao, Li-Ying,Liu, Jian-Hua,Li, Liu-An,Zhang, Jing,Jia, Xia-Li,Liu, Wen-Zhong Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.3

        Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.

      • KCI등재

        Assessment of the Cytotoxic and Apoptotic Effects of Chaetominine in a Human Leukemia Cell Line

        Jing-Yun Yao,Ruihua Jiao,Changqing Liu,Yupeng Zhang,Wan-Guo Yu,Yan-Hua Lu,Renxiang Tan 한국응용약물학회 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.2

        Chaetominine is a quinazoline alkaloid originating from the endophytic fungus Aspergillus fumigatus CY018. In this study, we showed evidence that chaetominine has cytotoxic and apoptotic effects on human leukemia K562 cells and investigated the pathway involved in chaetominine-induced apoptosis in detail. Chaetominine inhibited K562 cell growth, with an IC50 value of 35 nM, but showed little inhibitory effect on the growth of human peripheral blood mononuclear cells. The high apoptosis rates, morphological apoptotic features, and DNA fragmentation caused by chaetominine indicated that the cytotoxicity was partially caused by its pro-apoptotic effect. Under chaetominine treatment, the Bax/Bcl-2 ratio was upregulated (from 0.3 to 8), which was followed by a decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, and stimulation of Apaf-1. Furthermore, activation of caspase-9 and caspase-3, which are the main executers of the apoptotic process, was observed. These results demonstrated that chaetominine induced cell apoptosis via the mitochondrial pathway. Chaetominine inhibited K562 cell growth and induced apoptotic cell death through the intrinsic pathway, which suggests that chaetominine might be a promising therapeutic for leukemia.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼