RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Characteristics and Flexible Scheme of Students’ Art Troupes at Higher Vocational and Technical Colleges in China: A Case Study on the Art Troupe at N Higher Vocational and Technical College

        Huo Sheng,방수경 사단법인 미래융합기술연구학회 2021 아시아태평양융합연구교류논문지 Vol.7 No.1

        In order to more effectively cultivate creative talent, China’s higher education institutions have actively offered art education courses that can optimize their course system and have also built art troupes for their students. This paper mainly aims to promote equality in China’s higher arts education system, narrow the development gap between student art troupes at undergraduate schools and those of vocational and technical colleges in China’s higher education system, and explore the characteristics and flexible schemes of China’s higher vocational and technical colleges’ students’ art troupes. In this line, the students’ art troupe at N Higher Vocational and Technical College in China was used as a case study to analyze the four dimensions of the management system, student structure, faculty strength and activity scope of the students’ art troupe at this school based on investigation, observation and interview. The research results showed that in China’s higher vocational and technical colleges has the following four characteristics. First, Management has begun to develop but is not systematic. Second, Enrollment quality is low and talent is scarce. Third, The faculty is limited and has high turnover. Fourth, There is a diversified campus culture but its branding is not distinct. Based on these characteristics, this paper presents the flexible scheme.

      • KCI등재

        Mitochondrial NDUFA4L2 attenuates the apoptosis of nucleus pulposus cells induced by oxidative stress via the inhibition of mitophagy

        Wen-Ning Xu,Huo-Liang Zheng,Run-Ze Yang,Tao Liu,Wei Yu,Xin-Feng Zheng,Bo Li,Sheng-Dan Jiang,Lei-Sheng Jiang 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        The main pathological mechanism of intervertebral disc degeneration (IVDD) is the programmed apoptosis of nucleus pulposus (NP) cells. Oxidative stress is a significant cause of IVDD. Whether mitophagy is induced by strong oxidative stress in IVDD remains to be determined. This study aimed to investigate the relationship between oxidative stress and mitophagy and to better understand the mechanism of IVDD in vivo and in vitro. To this end, we obtained primary NP cells from the human NP and subsequently exposed them to TBHP. We observed that oxidative stress induced mitophagy to cause apoptosis in NP cells, and we suppressed mitophagy and found that NP cells were protected against apoptosis. Interestingly, TBHP resulted in mitophagy through the inhibition of the HIF-1α/NDUFA4L2 pathway. Therefore, the upregulation of mitochondrial NDUFA4L2 restricted mitophagy induced by oxidative stress. Furthermore, the expression levels of HIF-1α and NDUFA4L2 were decreased in human IVDD. In conclusion, these results demonstrated that the upregulation of NDUFA4L2 ameliorated the apoptosis of NP cells by repressing excessive mitophagy, which ultimately alleviated IVDD. These findings show for the first time that NDUFA4L2 and mitophagy may be potential therapeutic targets for IVDD.

      • SCIESCOPUSKCI등재

        Investigation on large turbo-generator stator end winding dynamic characteristics based on response surface method

        Zhao, Yang,Xiao, Yang,Lu, Sheng,Sun, Hao,Huo, Wenhao,Liao, Yong The Korean Institute of Power Electronics 2021 JOURNAL OF POWER ELECTRONICS Vol.21 No.10

        The natural frequencies corresponding to the particular mode shapes of a large turbo-generator must not be in the resonance region before delivery. Different parameters may clearly affect these dynamic characteristics. Different from other studies, this paper introduces a method for obtaining the inherent characteristics of end winding in a short period of time under multiple simultaneously changing parameters. The proposed process is based on the response surface method (RSM). In this method, the main concerned natural frequencies were taken as the critical index to describe the dynamic behaviors of the end winding, with which the mathematical relationship between the dynamic characteristics and design variables was analyzed. First, the stiffness of the rings, stiffness of the radial braces and number of pins bonded to the radial braces were used as samples for orthogonal experimental design. Then, the natural modes and frequencies of 25 different samples were acquired by conducting modal analysis with ABAQUS software. Utilizing these dynamic results, a second-order polynomial response surface model was established to describe the relationships between natural frequencies and these three different parameters. Then, the quality of this model was verified by calculating the valuating indexes for comparison with support vector regression (SVR). With the response surface model, the variation regularities of the natural frequencies and modes due to the above parameters were discussed. The method proposed in this paper can enable natural frequencies in the whole design space to be quickly determined without finite-element analysis, greatly improving the development efficiency and laying a foundation for dynamic response prediction during normal operation with different parameters and additional large turbo-generator stator end winding optimization.

      • Reviews on innovations and applications in structural health monitoring for infrastructures

        Li, Hong-Nan,Yi, Ting-Hua,Ren, Liang,Li, Dong-Sheng,Huo, Lin-Sheng Techno-Press 2014 Structural monitoring and maintenance Vol.1 No.1

        The developments and implementations of the structural health monitoring (SHM) system for large infrastructures have been gradually recognized by researchers, engineers and administrative authorities in the last decades. This paper summarizes an updated review on innovations and applications in SHM for infrastructures carried out by researchers at Dalian University of Technology. Invented sensors and data acquisition system are firstly briefly described. And then, some proposed theories and methods including the sensing technology, sensor placement method, signal processing and data fusion, system identification and damage detection are discussed in details. Following those, the activities on the standardization of SHM and several case applications on specific types of structure are reviewed. Finally, existing problems and promising research efforts in the field of SHM are given.

      • SCIESCOPUSKCI등재

        Heavy concrete shielding properties for carbon therapy

        Jin-Long Wang,Jiade J Lu,Da-Jun Ding,Wen-Hua Jiang,Ya-Dong Li,Rui Qiu,Hui Zhang,Xiao-Zhong Wang,Huo-Sheng Ruan,Yan-Bing Teng,Xiao-Guang Wu,Yun Zheng,Zi-Hao Zhao,Kai-Zhong Liao,Huan-Cheng Mai,Xiao-Dong Korean Nuclear Society 2023 Nuclear Engineering and Technology Vol.55 No.6

        As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm<sup>3</sup> to 4.14 g/cm<sup>3</sup>, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm<sup>3</sup>, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm<sup>3</sup> with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼