RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Heavy concrete shielding properties for carbon therapy

        Jin-Long Wang,Jiade J Lu,Da-Jun Ding,Wen-Hua Jiang,Ya-Dong Li,Rui Qiu,Hui Zhang,Xiao-Zhong Wang,Huo-Sheng Ruan,Yan-Bing Teng,Xiao-Guang Wu,Yun Zheng,Zi-Hao Zhao,Kai-Zhong Liao,Huan-Cheng Mai,Xiao-Dong Korean Nuclear Society 2023 Nuclear Engineering and Technology Vol.55 No.6

        As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm<sup>3</sup> to 4.14 g/cm<sup>3</sup>, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm<sup>3</sup>, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm<sup>3</sup> with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼