RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Research on the Aesthetic Evaluation Method of Seeding Machinery Based on RBF Neural Network

        Huiping Guo,Fuzeng Yang,Jundang Lu,Lin Zhu 보안공학연구지원센터 2016 International Journal of u- and e- Service, Scienc Vol.9 No.12

        Aesthetic factors are an essential part of farm machinery development and design. In this paper, we take seeding machinery, typical farm machinery, as an instance and establish an aesthetic evaluation model for seeding machinery based on RBF neural network to predict design effects, which will provide important evidence to intelligent design of seeding machinery. Furthermore, aesthetic characteristic elements of seeding machinery are analyzed to establish an evaluation index system that is classified into three levels, of which the first-level index include technical and formal beauty, the second-level index contains beauty of function, material, shape and color and the third-level index comprises 17 factors. RBF neural network is employed to establish a mathematical model, where input layer is composed of 17 low-level evaluation index values and output layer is the comprehensive evaluation values of aesthetics by experts. Training and verification of 22 samples found that predictive effects of RBF neural network-based model on the evaluation model of seeding machinery modeling are superior to BP network-based prediction model, for it can better deal with uncertainties.

      • KCI등재

        Self-bending extrusion molding of distorted channels

        Fanlei Min,Huiping Liu,Guangming Zhu,Zheng Chang,Xujie Gao,Bowen Yue,Nana Guo,Xiaoqing Zhai 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.5

        Using an integrated profile extrusion and bending forming process with a streamlined extrusion die, a new self-bending extrusion molding technology is proposed with an axis-distorted variable channel. By designing the streamlined extrusion die structure of the distorted central axis, the metal was made to flow non-uniformly in the die cavity, thereby directly extruding a bent profile. The central axis of the streamlined extrusion die is described by a trigonometric function and a Gaussian function. A numerical simulation was applied to analyze the metal flow pattern, equivalent strain, and strain-rate distribution during the self-bending extrusion process. The influences of the extrusion velocity and the addition of a bearing on the self-bending deformation profiles were investigated. During the extrusion process, the streamline at the center of the billet could describe the overall flow of the metal in the die cavity, and the distance between the point on the end face of the die outlet and the center of the die outlet directly determined the degree of extrusion and bending. The greater the distance was, the larger was the degree of bending. The metal strain on the convex edge of the die was greater than that on the concave edge of the die, with the extruded profile always bending toward the concave edge. The strain rate of the metal changed the fastest near the most convex point of the die. As the extrusion velocity increased or more bearings were added, the radius of curvature of the extruded profile increased nonlinearly.

      • KCI등재
      • KCI등재

        Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

        Dong Lifeng,Gao Yanhua,Jing Xuelan,Guo Huiping,Zhang Hongsen,Lai Qi,Diao Qiyu 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.9

        Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems. Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment.Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation.Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production.Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

      • KCI등재

        Prediction of exploration targets based on integrated analyses of source rock and simulated hydrocarbon migration direction: a case study from the gentle slope of Shulu Sag, Bohai Bay Basin, northern China

        Changqing Ren,Fugui He,Xianzhi Gao,Dongsheng Wu,Wenli Yao,Jianzhang Tian,Huiping Guo,Yuanxin Huang,Li Wang,Han Feng,Junwei Li 한국지질과학협의회 2019 Geosciences Journal Vol.23 No.6

        The Shulu Sag which is a rifted sag with NNE trend is located in the south of Jizhong Depression, Bohai Bay Basin, northern China. The gentle slope and three troughs are situated in the west and east of the sag, respectively. Both of the lower part of Shasan Member (Es3x) and the lower part of Shayi Member (Es1x) act as source rocks in this sag. Researches on the type, quantity, quality and thermal maturity of the respective organic matter have been conducted using Rock-Eval pyrolysis data. Type II is the dominant kerogen in Es1x of all troughs. However, Type II1 and III is the dominant kerogen in Es3x of Middle-Southern and Northern trough, respectively. TOC (total organic carbon) and pyrolysis S2 (hydrocarbon) values suggest that the Es1x source rocks in Middle-Southern and Northern trough are fair to good and poor to fair generative potential of hydrocarbon, separately. The Es3x source rocks in Middle-Southern and Northern trough possess fair to excellent and poor to fair generative potential of hydrocarbon, individually. Tmax (pyrolysis temperature at maximum S2) values indicate that most of Es3x samples are thermally mature, but all Es1x samples are thermally immature. Under large scale condition, the hydrocarbon secondary migration in the upper part of Shasan Member (Es3s), Shaer Member (Es2) and the upper part of Shayi Member (Es1s) have been simulated using fluid potential model with Arcgis 9.3 software. The simulation results reveal the direction of hydrocarbon secondary migration and the distribution of hydrocarbon migration-accumulation units (HMAUS), and also suggest that the hydrocarbon migration direction is obviously controlled by nose-like structure belts where most of hydrocarbons accumulate. That shows high reliability because they are consistent with the hydrocarbon exploration result in this area. On the basis of integrated analyses of source rocks and hydrocarbon migration direction, the following five areas in the gentle slope are identified to be the preferred hydrocarbon accumulation area: Taijiazhuang area, northern and southern Xicaogu area, as well as northern and southern Leijiazhuang area. It is considerably helpful to reduce the risk in hydrocarbon exploration of Shulu Sag.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼