RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Network pharmacology and molecular docking reveal the mechanism of Qinghua Xiaoyong Formula in Crohn's disease

        Chenyang Fang,Yanni Pei,Yunhua Peng,Hong Lu,Yin Qu,Chunsheng Luo,Yafeng Lu,Wei Yang The Korean Society of Pharmacology 2023 The Korean Journal of Physiology & Pharmacology Vol.27 No.4

        Crohn's disease (CD) is a chronic inflammatory illness of the digestive system with unknown etiology, and its incidence is increasing worldwide. However, there are currently no effective treatments or medications available for individuals with CD. Therefore, novel therapeutic strategies are urgently needed. The bioactive compounds and targets associated with compounds of Qinghua Xiaoyong Formula (QHXYF) were examined using The Traditional Chinese Medicine Systems Pharmacology database, and 5 disease target databases were also used to identify CD-related disease targets. A total of 166 overlapping targets were identified from QHXYF-related and CD-related disease targets and they were found to be enriched in oxidative stress-related pathways and the PI3K/AKT signaling pathway. Molecular docking was then used to predict how the bioactive compounds would bind to the hub targets. It was found that quercetin could be the core bioactive compound and had good binding affinity to the top 5 hub targets. Finally, animal experiments were performed to further validate the findings, and the results revealed that QHXYF or quercetin inhibited 2,4,6-trinitrobenzenesulfonic acid-induced inflammation and oxidative stress processes by inhibiting the PI3K/AKT pathway, thereby improving CD symptoms. These findings suggest that QHXYF and quercetin may be potential novel treatments for CD.

      • KCI등재

        NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation

        Jun Zhou,Chenyang Lu,Dijun Zhang,Chennv Ma,Xiurong Su 한국미생물학회 2017 The journal of microbiology Vol.55 No.8

        Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD+, NADP+, oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe3+ influences the metabolite profiles of V. parahaemolyticus.

      • KCI등재

        Research on Synchronous Phase Shift Control Strategy of Bilateral Converter in Bidirectional Inductive Power Transfer System

        Wang Songcen,Jiang Cheng,Lu Qiang,Xia Chenyang,Wei Nan 대한전기학회 2021 Journal of Electrical Engineering & Technology Vol.16 No.5

        It is the key to realize the precise control of power transfer direction and energy to ensure the synchronous phase shift of the bilateral converters in bidirectional inductive power transfer (BD-IPT) system. In order to solve the problem that wireless communication is adopted in bidirectional inductive power transfer system, and the delay caused by the power oscillation aff ects power transfer. A method for synchronizing the control signals of the bilateral converters that track the extreme value of the output DC current is proposed in this paper, and dual phase-shift control is adopted to make the system effi cient when it operates in a wide output power range. First, the power and effi ciency characteristics of the BDIPT system are analyzed in the paper. Next, a method to track the extreme value of the output DC current is designed for synchronization. Then, in order to ensure that the system maintains high-effi ciency operation in a wide power range, a bilateral phase shift control is proposed. Finally, the validity of the scheme is verifi ed through simulation and experiment.

      • KCI등재

        Experimental deployment and validation of a distributed SHM system using wireless sensor networks

        Nestor E. Castaneda,Shirley Dyke,Chenyang Lu,Fei Sun,Greg Hackmann 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.32 No.6

        Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

      • SCIESCOPUS

        Experimental deployment and validation of a distributed SHM system using wireless sensor networks

        Castaneda, Nestor E.,Dyke, Shirley,Lu, Chenyang,Sun, Fei,Hackmann, Greg Techno-Press 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.32 No.6

        Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

      • SCIESCOPUS

        Experimental validation of a multi-level damage localization technique with distributed computation

        Yan, Guirong,Guo, Weijun,Dyke, Shirley J.,Hackmann, Gregory,Lu, Chenyang Techno-Press 2010 Smart Structures and Systems, An International Jou Vol.6 No.5

        This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

      • KCI등재후보

        Experimental validation of a multi-level damage localization technique with distributed computation

        Guirong Yan,Weijun Guo,Shirley J. Dyke,Gregory Hackmann,Chenyang Lu 국제구조공학회 2010 Smart Structures and Systems, An International Jou Vol.6 No.5

        This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

      • KCI등재

        Damage detection on a full-scale highway sign structure with a distributed wireless sensor network

        Zhuoxiong Sun,Sriram Krishnan,Greg Hackmann,Guirong Yan,Shirley J. Dyke,Chenyang Lu,Ayhan Irfanoglu 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.1

        Wireless sensor networks (WSNs) have emerged as a novel solution to many of the challenges of structural health monitoring (SHM) in civil engineering structures. While research projects using WSNs are ongoing worldwide, implementations of WSNs on full-scale structures are limited. In this study, a WSN is deployed on a full-scale 17.3m-long, 11-bay highway sign support structure to investigate the ability to use vibration response data to detect damage induced in the structure. A multi-level damage detection strategy is employed for this structure: the Angle-between-String-and-Horizon (ASH) flexibility-based algorithm as the Level I and the Axial Strain (AS) flexibility-based algorithm as the Level II. For the proposed multi-level damage detection strategy, a coarse resolution Level I damage detection will be conducted first to detect the damaged region(s). Subsequently, a fine resolution Level II damage detection will be conducted in the damaged region(s) to locate the damaged element(s). Several damage cases are created on the full-scale highway sign support structure to validate the multi-level detection strategy. The multi-level damage detection strategy is shown to be successful in detecting damage in the structure in these cases.

      • KCI등재

        Current state of research about acupuncture for the treatment of COVID-19: A scoping review

        Chen Chen,Jie Zhan,Hao Wen,Xiaojing Wei,Lu Ding,Chenyang Tao,Cui Li,Peiming Zhang,Yuyuan Tang,Jing-chun Zeng,Li-ming Lu 한국한의학연구원 2021 Integrative Medicine Research Vol.10 No.-

        Background Since the outbreak of coronavirus disease (COVID-19), acupuncture has been widely used in the treatment of COVID-19. The research community has responded rapidly and has already published many research articles about this topic. Methods We searched PubMed, Embase, Cochrane Library as well as CNKI, Wanfang and VIP from January 1, 2020 to July 31, 2021. The dates of publication, language of publication, methodological characteristics and the key findings were analyzed separately. The data are presented as bar graphs, structured tables and figures. Results In this scoping review, 16 research articles were included: 7 case reports, 6 observational studies, 1 review, 1 RCT and 1 nonrandomized clinical trial. The majority of the articles (81.3%) were published by Chinese scholars, 12.5% articles were by scholars in the United States, and 6.3% articles were by scholars in Iran. The included studies reported that acupuncture could alleviate the symptoms of COVID-19 patients, shorten their hospitalization days, and is effective for the elderly. There were no side effects reported. The most frequent acupoints used were LI4, PC6, ST36 and KI3. They reported many obstacles in implementing acupuncture therapy for treating COVID-19 patients. Conclusion Acupuncture has a good effect for the treatment of COVID-19, but high-quality evidence support is still lacking. Coupled with the difficulties that acupuncturists experienced during the process of treatment, the promotion of acupuncture treatment for COVID-19 faces many obstacles. Background Since the outbreak of coronavirus disease (COVID-19), acupuncture has been widely used in the treatment of COVID-19. The research community has responded rapidly and has already published many research articles about this topic. Methods We searched PubMed, Embase, Cochrane Library as well as CNKI, Wanfang and VIP from January 1, 2020 to July 31, 2021. The dates of publication, language of publication, methodological characteristics and the key findings were analyzed separately. The data are presented as bar graphs, structured tables and figures. Results In this scoping review, 16 research articles were included: 7 case reports, 6 observational studies, 1 review, 1 RCT and 1 nonrandomized clinical trial. The majority of the articles (81.3%) were published by Chinese scholars, 12.5% articles were by scholars in the United States, and 6.3% articles were by scholars in Iran. The included studies reported that acupuncture could alleviate the symptoms of COVID-19 patients, shorten their hospitalization days, and is effective for the elderly. There were no side effects reported. The most frequent acupoints used were LI4, PC6, ST36 and KI3. They reported many obstacles in implementing acupuncture therapy for treating COVID-19 patients. Conclusion Acupuncture has a good effect for the treatment of COVID-19, but high-quality evidence support is still lacking. Coupled with the difficulties that acupuncturists experienced during the process of treatment, the promotion of acupuncture treatment for COVID-19 faces many obstacles.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼