RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        바인더 함량에 따른 Li(Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>)O<sub>2</sub> 전극의 접착력 및 전기화학 성능에 관한 연구

        노영준,변승우,유명현,이용민,Roh, Youngjoon,Byun, Seoungwoo,Ryou, Myung-Hyun,Lee, Yong Min 한국전기화학회 2018 한국전기화학회지 Vol.21 No.3

        동일 전극 로딩 조건(${\sim}15mg\;cm^{-2}$)에서 면적당 용량($mAh\;cm^{-2}$)을 극대화하기 위해, 고분자 바인더의 함량을 4, 2, 1 wt%로 줄인 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 전극을 제조하였다. 바인더 함량이 1 wt%로 낮춘 경우, 압연 후 펀칭 과정에서 전극 코팅층이 부분적으로 박리되는 문제가 발생하여 추가 분석은 진행되지 않았다. 전극 내 바인더 함량을 4 wt%에서 2 wt%로 줄이면, 계면 접착력은 0.4846에서 $0.2627kN\;m^{-1}$로 약 46% 감소하고, 전극 코팅층의 강도도 3.847에서 2.013 MPa로 약 48%가 떨어졌다. 그러나, 두 전극을 리튬 전극과 반쪽 전지로 구성하여 전기화학적 특성을 살펴보면, 초기 방전 용량과 충방전 효율은 유사하였다. 하지만, 단기 수명 평가에서 2 wt% 바인더 전극은 수명 특성이 떨어질 뿐만 아니라, 전지를 분해하는 과정에서 전극 코팅층이 집전체에서 박리되는 현상이 관찰되었다. 반면, 4 wt% 바인더 전극은 높은 전극 로딩조건에서도 전극 코팅층과 집전체 계면이 잘 유지되고 있음이 확인되었다. To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.

      • KCI등재

        SAICAS를 이용한 리튬이차전지용 복합전극 결착특성 분석

        변승우,노영준,진다희,유명현,이용민,Byun, Seoungwoo,Roh, Youngjoon,Jin, Dahee,Ryou, Myung-Hyun,Lee, Yong Min 한국전기화학회 2018 한국전기화학회지 Vol.21 No.2

        복합전극의 결착특성은 리튬이차전지의 장기신뢰성 확보와 고에너지밀도 구현을 위한 중요한 물성임에도 불구하고, 측정 기술의 한계로 관련 연구가 제한적이었다. 하지만, $1{\sim}1000{\mu}m$ 두께의 코팅층을 절삭 및 박리하면서 결착특성을 측정할 수 있는 SAICAS(Surface And Interfacial Cutting Analysis System)란 장비의 출현으로 전극 결착특성 연구가 활발해지고 있다. 따라서, 본 총설에서는 SAICAS를 이용한 복합전극의 결착특성 분석 원리 및 측정 방법뿐만 아니라, Peel Test와 같은 기존 결착특성 분석 방법과 비교함으로써 SAICAS를 이용한 분석 방법의 신뢰성 검증 결과를 제시한다. 또한, 전극 설계의 최적화, 신규 바인더 도출 연구, 복합전극 내 바인더 분포 등의 연구에서 SAICAS가 적용된 사례를 소개한다. 이를 통해 SAICAS를 이용한 분석 방법이 리튬이차전지용 복합전극의 결착특성 분석에 용이하게 적용될 수 있음을 제안한다. Although the adhesion properties of composite electrodes are important for securing long-term reliability and realizing high energy density of lithium secondary batteries, related research has not been carried out extensively due to the limitation of measurement technology. However, surface and interfacial cutting analysis system(SAICAS), which can measure the adhesion properties while cutting and peeling a coating layer of $1{\sim}1000{\mu}m$ thickness, has been developed and applied for analyzing the adhesion properties of composite electrodes for lithium secondary batteries. Thus, this review presents not only the principle and measurement method of SAICAS but also comparison results between SAICAS and conventional peel test. In addition, application examples of SAICAS are introduced in the study of electrode design optimization, new binder derivation study, and binder distribution in composite electrode. This suggests that SAICAS is an analytical method that can be easily applied to investigate the adhesion properties of composite electrodes for lithium secondary batteries.

      • KCI등재

        고안전성 리튬이차전지 구현을 위한 나노 세라믹 코팅 분리막 제조 및 전기화학특성 분석

        이정모,전현규,한태영,유명현,이용민,Lee, Jungmo,Jeon, Hyunkyu,Han, Taeyeong,Ryou, Myung-Hyun,Lee, Yong Min 한국전기화학회 2017 한국전기화학회지 Vol.20 No.2

        폴리올레핀 분리막의 내열성을 향상시키면서도 전기화학특성 개선을 위해 RF Magnetron Sputter기반으로 수십 나노미터 수준의 세라믹 층이 코팅된 내열 분리막을 제조하였다. 분리막 원단의 열적 손상없이 코팅 시간을 최소화하기 위한 증착 조건을 최적화 하였고, 이를 기반으로 제조된 내열 분리막의 물리적, 전기화학적 평가를 진행하였다. 약 20 nm의 $Al_2O_3$가 코팅된 Polypropylene(PP) 분리막은 원단 분리막 대비 통기 특성 (원단: 211.3 sec/100 mL, 코팅 분리막: 250.8 sec/100 mL)은 떨어졌으나, 열 수축율 (원단: 19.4%, 코팅 분리막: 0.0% @ $140^{\circ}C$ & 30 min), 전해액 Uptake(원단: 176%, 코팅 분리막: 190%) 및 이온전도도 (원단: 0.700 mS/cm, 코팅 분리막: 0.877 mS/cm)는 모두 향상되었다. 그 결과, 2032-type Half-cell($LiMn_2O_4/Li$)을 이용한 전기화학적 평가에서도, 향상된 율별 특성과 유사한 수명 특성을 나타내었다. Herein, we have fabricated an ultrathin aluminum oxide ($Al_2O_3$) coated PP separator by using a RF sputter deposition process. Approximately 20 nm thickness coating layer on the bare PP separator was formed at the power of 55 W for 2 minutes without thermal damage. Whereas only permeability of the coated separator was degraded slightly, other properties such as thermal stability, uptake amount of liquid electrolyte, and ionic conductivity were improved comparing to the bare PP separator. As a result, an only 20-nm-thick $Al_2O_3$ coating layer could improve the rate capability compared with a bare PP separator under a high current density.

      • 펄스 측정법에 기반한 리튬이차전지 출력 측정에 관한 전산 모사

        박주남,변승우,한세경,최진혁,유명현,이용민,Park, Joonam,Byun, Seoungwoo,Appiah, Williams Agyei,Han, Sekyung,Choi, Jin Hyeok,Ryou, Myung-Hyun,Lee, Yong Min 한국전력공사 2015 KEPCO Journal on electric power and energy Vol.1 No.1

        시간대별 효율적인 전력 운영과 전력품질 향상을 위해 ESS (Energy Storage System)의 보급이 세계적으로 활발하게 이루어지고 있다. 이러한 ESS용 전원소자로 리튬이차전지의 채용이 급격히 늘어남에 따라, 리튬이차전지의 수명 및 출력 열화 거동을 측정 및 예측하는 기술이 시급히 요구되고 있다. 특히, ESS 운영에 있어 핵심 특성인 리튬이차 전지 출력은 측정이 어려울 뿐만 아니라, 정확한 측정을 위해서는 많은 시간이 소요되는 문제점이 있다. 따라서, 본 연구에서는 ESS용 리튬이차전지 단전지를 전산 모델링 한 후, 펄스 측정법을 적용하여 충전상태에 따른 방전 및 충전시의 직류저항(DC-IR)과 출력을 예측한다. 또한, 두 가지 펄스 측정법인 HPPC (Hybrid Pulse Power Characteristics)와 J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)의 결과를 비교 분석한다. Energy storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality. As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior. In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities. Due to these difficulties, computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-based measurement methods. Moreover, based on the hybrid pulse power characteristics (HPPC) and J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods, their electrochemical properties are also compared and discussed.

      • KCI등재

        LiBOB 전해액 첨가제 도입에 따른 Li(Ni<sub>1/3</sub>Co<sub>1/3</sub>Mn<sub>1/3</sub>)O<sub>2</sub>/graphite 전지의 고온특성

        정지선,이혜원,이후길,유명현,이용민,Jeong, Jiseon,Lee, Hyewon,Lee, Hoogil,Ryou, Myung-Hyun,Lee, Yong Min 한국전기화학회 2015 한국전기화학회지 Vol.18 No.2

        음극 표면에 solid electrolyte interphase (SEI)를 형성하는 전해질 첨가제인 lithium bis(oxalate) borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA)를 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ (NCM)/graphite 전지에 도입하여 고온 저장 특성을 비교하였다. 각 전지를 50%의 충전상태(stage of charge, SOC)에서, 고온 저장($60^{\circ}C$, 20일) 시킨 이후의 용량 유지율을 확인한 결과, LiBOB 1 wt.%가 가장 우수한 용량 유지 특성(초기 방전용량 대비 86.7%)을 나타내었다. LiBOB 1 wt.%의 경우 고온 저장 전후의 전지 저항 증가 및 SEI 두께 변화가 가장 적었고, 이는 음극 SEI에 포함된 다량의 semi-carbonate 물질과 연관성이 높다고 판단된다. 또한, LiBOB 1 wt.%가 포함된 NCM/graphite 전지의 상온($25^{\circ}C$) 및 고온수명($60^{\circ}C$) 특성도 기준 전해액(1.15 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume))보다 각각 6%와 9% 향상된 결과를 보여주었다. 따라서, LiBOB이 상온 성능을 동등 이상으로 유지하면서도 고온 특성을 개선할 수 있는 우수한 전해액 첨가제로 판단된다. The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.

      • SCOPUSKCI등재

        리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더

        송다노 ( Danoh Song ),이승현 ( Seung Hyun Lee ),김규만 ( Kyuman Kim ),유명현 ( Myung Hyun Ryou ),박원호 ( Won Ho Park ),이용민 ( Yong Min Lee ) 한국공업화학회 2015 공업화학 Vol.26 No.6

        A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight = ~10,945), the coating slurry was then prepared and Si anode was fabricated. For the control system, Si anode based on polyvinylidene fluoride (PVDF, molecular weight = ~350,000) having the same constituent ratio was prepared. During precycling, PI polymeric binder revealed much improved discharge capacity (2,167 mAh g-1) compared to that of using PVDF polymeric binder (1,740 mAh g-1), while the Coulombic efficiency of two systems were similar. PI polymeric binder improved the cycle retention ability during cycles compared to that of using PVDF, which is attributed to an improved adhesion property inside Si anode diminishing the dimensional stress during Si volume changes. The adhesion property of each polymeric binder in Si anode was confirmed by surface and interfacial cutting analysis system (SAICAS) (Si anode based on PI polymeric binder = 0.217 kN m-1 and Si anode based on PVDF polymeric binder = 0.185 kN m-1).

      • KCI등재

        액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구

        윤별희,한태영,김석우,진다희,이용민,유명현,Yoon, Byeolhee,Han, Taeyeong,Kim, Seokwoo,Jin, Dahee,Lee, Yong min,Ryou, Myung-Hyun 한국전기화학회 2018 한국전기화학회지 Vol.21 No.2

        많은 실험실 기반의 리튬이차전지 실험결과는 코인셀로부터 얻어진다. 이는 조립의 용이성, 저렴한 가격, 실험 결과의 우수한 재연성 등에 기인한다. 코인셀은 케이스(case), 가스켓(gasket), 스페이서(spacer disk), 스프링(wave spring)로 구성되어 있으며, 이러한 구조적인 특성으로 인하여 코인셀은 상용화된 파우치, 각형 및 원통형 전지에 비하여 전극 무게 대비 많은 양의 전해질을 포함하게 된다. 하지만 과량의 전해액이 셀의 성능에 미치는 영향에 대한 연구는 현재까지 이루어지지 않은 상황이다. 본 연구에서는 액체 전해액의 양을 다르게 제어하여 코인셀에 미치는 영향을 알아보고자 하였다. 전해액의 양은 전극 용량 대비 30, $100mg\;mAh^{-1}$(전해액의 양/전극용량)로 제어하였으며, 조립된 셀의 전해액 함량에 따른 전기화학적 특성을 확인하기 위해 초기 충 방전 곡선과 상온 ($25^{\circ}C$), 고온 ($60^{\circ}C$) 및 고전압(4.5 V)에서의 수명특성평가를 진행하였다. $30mg\;mAh^{-1}$의 전해액을 포함하는 단위 전지의 경우, 고온 및 고전압 조건에서 $100mg\;mAh^{-1}$의 경우에 비해 매우 우수한 방전 용량 유지 특성을 나타내었다. 전자는 후자보다 더 큰 내부저항 증가를 보였으며, 이를 통해 전해액의 양이 전지의 방전 용량 유지 특성에 매우 큰 영향을 미치고 있음을 확인하였다. Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

      • KCI등재

        친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성

        이해수 ( Hae Soo Lee ),박장우 ( Jang Woo Park ),이용민 ( Yong Min Lee ),유명현 ( Myung Hyun Ryou ),김광만 ( Kwang Man Kim ),고장면 ( Jang Myoun Ko ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.3

        6M의 KOH 수계 전해액에 potassium polyacrylate (PAAK)가 3 wt.% 포함된 하이드로겔 전해질을 제조하고, 이에 친수성 실리카 OX50을 1 wt.% 포함시킨 하이드로겔 전해질을 함께 제조하고, 이를 Scimat 분리막에 코팅 및 건조하여 활성탄 수퍼커패시터의 자기지지체 전해질/분리막으로 사용하여 그 실리카 첨가효과를 조사하였다. 실리카 입자는 다공성 분리막 지지체의 표면기공에 균일하게 분포하여 하이드로겔의 이온전도도와 전기화학적 안정성을 향상시켰으며 이에 따라 고속스캔 조건에서도 활성탄 수퍼커패시터의 비축전용량이 비교적 높게 유지되었는데, 이는 실리카가 포함된 하이드로겔 전해질이 활성탄 전극과 분리막 사이에서의 계면저항이 감소하기 때문이다. A hydrogel electrolyte consisting of 6 M KOH aqueous solution, potassium polyacrylate (PAAK, 3 wt.%), and a hydrophilic silica OX50 (1 wt.%) was prepared to use as an electrolyte medium coated on a Scimat separator of activated carbon supercapacitor. The silica particle distributed homogeneously on surface pores of the separator to increase ionic conductivity and electrochemical stability of the hydrogel electrolyte. The silica addition also involved superior specific capacitance even at higher scan rates due to decrease in interfacial resistance between hydrogel electrolyte and activated carbon electrode.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼