RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 양자점 큐비트 기반 양자컴퓨팅의 국외 연구 동향 분석

        백충헌,최병수,Baek, Chungheon,Choi, Byung-Soo 한국전자통신연구원 2020 전자통신동향분석 Vol.35 No.2

        Quantum computing is regarded as one of the revolutionary computing technologies, and has attracted considerable attention in various fields, such as finance, chemistry, and medicine. One of the promising candidates to realize fault tolerant quantum computing is quantum dot qubits, due to their expectation of high scalability. In this study, we briefly introduce the international tendencies for quantum dot quantum computing. First, the current status of quantum dot gate operations is summarized. In most systems, over 99% of single qubit gate operation is realized, and controlled-not and controlled-phase gates as 2-qubit entangling gates are demonstrated in quantum dots. Second, several approaches to expand the number of qubits are introduced, such as 1D and 2D arrays and long-range interaction. Finally, the current quantum dot systems are evaluated for conducting quantum computing in terms of their number of qubits and gate accuracies. Quantum dot quantum computing is expected to implement scalable quantum computing. In the noisy intermediate-scale quantum era, quantum computing will expand its applications, enabling upcoming questions such as a fault-tolerant quantum computing architecture and error correction scheme to be addressed.

      • 양자컴퓨팅 기술 연구개발 동향

        백충헌,황용수,김태완,최병수,Baek, C.H.,Hwang, Y.S.,Kim, T.W.,Choi, B.S. 한국전자통신연구원 2018 전자통신동향분석 Vol.33 No.1

        The calculation speed of quantum computing is expected to outperform that of existing supercomputers with regard to certain problems such as secure computing, optimization problems, searching, and quantum chemistry. Many companies such as Google and IBM have been trying to make 50 superconducting qubits, which is expected to demonstrate quantum supremacy and those quantum computers are more advantageous in computing power than classical computers. However, quantum computers are expected to be applicable to solving real-world problems with superior computing power. This will require large scale quantum computing with many more qubits than the current 50 qubits available. To realize this, first, quantum error correction codes are required to be capable of computing within a sufficient amount of time with tolerable accuracy. Next, a compiler is required for the qubits encoded by quantum error correction codes to perform quantum operations. A large-scale quantum computer is therefore predicted to be composed of three essential components: a programming environment, layout mapping of qubits, and quantum processors. These components analyze how many numbers of qubits are needed, how accurate the qubit operations are, and where they are placed and operated. In this paper, recent progress on large-scale quantum computing and the relation of their components will be introduced.

      • 양자정보기술 연구개발의 거대한 물결

        황용수,백충헌,김태완,허재두,Hwang, Y.,Baek, C.H.,Kim, T.,Huh, J.D. 한국전자통신연구원 2019 전자통신동향분석 Vol.34 No.1

        Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.

      • 음향 방출법에 의한 파괴 인성치 측정 및 파괴 안정성 평가를 위한 연구

        이강용,백충헌 대한기계학회 1989 대한기계학회논문집 Vol.13 No.1

        본 연구에서는 AE법에 의해 J$_{IC}$를 결정하는 것은 Takahashi등의 방법을 따르되 AE 실험결과를 토대로 이론을 전개하여 재료의 물성 곡선인 J-R곡선의 실험식과 재료 찢어짐 계수를 계산할 수 있는 실험식을 유도하며, 이렇게 구한 실험식을 불안정 파괴 조건에 적용하여 그 타당성을 검토한다.다. The behaviors of acoustic emission emitted in the tests of the fracture toughness and fracture stability are observed by using the specimens of aluminum 2024-T351 and 7039-T6 alloys. The empirical eqution of J-R curve is derived. It is demonstrated from the comparison of the fracture toughness obtained from J-R curve with that from ASTM standard E813-81 that the latter is larger than the former. The discontinuous point in the log-log graph of J-integral vs. total acoustic emission count is observed in between the two offset lines referred from ASTM standard E813-81, but it's physical meaning is uncretain. An empirical material tearing modulus is derived in terms of the total acoustic emission count and proved to be valid in fracture instability test.

      • 결함허용 양자컴퓨팅 시스템 기술 연구개발 동향

        황용수,김태완,백충헌,조성운,김홍석,최병수,Hwang, Y.,Kim, T.W.,Baek, C.H.,Cho, S.U.,Kim, H.S.,Choi, B.S. 한국전자통신연구원 2022 전자통신동향분석 Vol.37 No.2

        Similar to present computers, quantum computers comprise quantum bits (qubits) and an operating system. However, because the quantum states are fragile, we need to correct quantum errors using entangled physical qubits with quantum error correction (QEC) codes. The combination of entangled physical qubits with a QEC protocol and its computational model are called a logical qubit and fault-tolerant quantum computation, respectively. Thus, QEC is the heart of fault-tolerant quantum computing and overcomes the limitations of noisy intermediate-scale quantum computing. Therefore, in this study, we briefly survey the status of QEC codes and the physical implementation of logical qubit over various qubit technologies. In summary, we emphasize 1) the error threshold value of a quantum system depends on the configurations and 2) therefore, we cannot set only any specific theoretical and/or physical experiment suggestion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼