RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Thiazole 또는 Pyrazine유도성 Microsomal Epoxide Hydrolase의 순수정제: Epoxide Hydrolase-관련성 43 kDa 단백질의 유도증가

        김상건,Kim, Sang-Geon 대한약리학회 1993 대한약리학잡지 Vol.29 No.2

        Microsomal epoxide hydrolase (mEH)은 epoxide형 중간대사물을 해독화하는 효소이다. 본 실험실에서는 thiazole 또는 pyrazine을 rat에 투여할 때 mEH mRNA수준이 증가되고 mEH가 유도증가한다는 것을 밝힌바 있다(Carcinogenesis, Kim et al, 1993). 본 연구에서는 Thiazole처리를 한 rat의 간 microsome 분획으로 부터 DEAE-cellulose column chromatography를 이용하여 mEH를 순수분리하였고, 이를 SDS-PAGE분석 및 N 말단 amino acid 서열분석으로 확인하였다. Pyrazine처리를 한 rat의 간 microsome분획에서는 mEH와 더불어 이와 관련된 43 kDa 단백질이 함께 정제되었다. 정제된 thiazole 유도성 mEH를 토끼에 주사하여 항체를 생산하였고, 이 항체를 이용한 immunoblot 분석을 하였을 때 간 microsome 분획의 mEH가 thiazole투여군에서는 대조군에 비하여 10배, pyrazine 투여군에서 7배 증가하였다. Pyrazine처치한 rat의 간 microsome 분획에서는 mEH 관련성 43 kDa 단백질이 동시 유도증가하는 것을 면역화학적 반응으로도 확인하였다. 이때 Pyrazine으로 유도된 rat의 간 microsome 분획 또는 정제분획에 존재하는 43 kDa 단백질과 mEH의 비율은 1 : 15로 나타났다. 정제된 mEH와 43 kDa 단백질의 N 말단 amino acid 서열을 분석하였을때 43 kDa 단백질의 N 말단이 mEH와 동일하게 나타나 관련 단백질임을 확인하였다. 이러한 mEN 유도현상에 종차가 있는지를 알아보기 위하여 thiazole과 pyrazine을 각각 rabbit에 투여하였을 때 rabbit에서 는 mEH의 유도증가가 일어나지 않았으며, pyrazine 투여군에서 43 kDa 단백질의 증가는 관찰 되었다. 본 연구는 thiazole 또는 pyrazine 투여후 mEH 발현이 유도증가되며, pyrazine 투여 후에는 mEH 및 이와 관련된 43 kDa 단백질이 동시유도되고, 이러한 mEH 유도발현에 rat와 rabbit간에는 종차가 있음을 보여준다. Liver microsomal epoxide hydrolase (mEH) is active in the detoxification of epoxide-containing reactive intermediate. Previous studies in this laboratory have shown that thiazole and pyrazine are efficacious inducers of mEH in rats with large increases in mEH mRNA levels (Carcinogensis, Kim et al, 1993). mEH was purified to electrophoretic homogeneity from thiazole-induced rat hepatic microsomes using DEAE-cellulose column chromatography whereas another protein $({\sim}43\;kDa)$ was co-purified with mEH from pyrazine-induced rat hepatic micrsomes (200 mg/kg body weight/day, ip, 3d). The antibody raised from a rabbit against mEH protein purified from thiazole-induced rat hepatic microsomes appeared to specifically recognize mEH protein in rat hepatic microsomes, as assessed by immunoblotting analysis. Immunoblotting analyses revealed a 10- and 7-fold increase in mEH levels in the hepatic microsomes isolated from thiazole- and pyrazine-treated rats, respectively. Moreover, immunoblotting analysis showed cross-reactivity of the mEH antibody with a 43 kDa protein in pyrazine-induced rat hepatic microsomes and with co-purified 43 kDa protein in purified fractions. The ratio between the 43 kDa protein and mEH in pyrazine-induced rat microsomes or in purified fractions was ${\sim}1$ to 15. N-terminal amino acid sequence analysis of both purified rat mEH and 43 kDa protein revealed that 10 out of 12 amino acids in N-terminus of the 43 kDa protein were identical with the mEH sequence with two amino acid residues of the 43 kDa protein undetermined. Either thiazole or pyrazine treatment, however, failed to increase the levels of mEH protein in rabbits while pyrazine caused elevation of the 43 kDa protein in this species, as determined by irnrnunoblotting analysis. These results demonstrated that treatment of rats with either thiazole or pyrazine causes elevation in hepatic mEH expiession whereas pyrazine treatment results in induction of another mEH-related 43 kDa protein and that a distinct species difference exists between rats and rabbits in the induction of mEH by these xenobiotics.

      • The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity

        김상건,조주연,Kim, Sang-Geon,Cho, Joo-Youn The Korean Society of Pharmacology 1996 대한약리학잡지 Vol.32 No.3

        간독성물질인 $CCl_4$의 대사에서 반응성이 높은 대사중간체의 증가가 P450 2E1의 활성 및 발현증가와 관련된다. YH439는 랫트에서 사염화탄소에 의하여 유발된 간 손상에 보호효과가 탁월하였고, 각종 독성물질에 의하여 발생하는 간염을 억제하며 P450 2E1의 발현을 억제하는 것으로 나타났다. P450 2E1의 발현억제가 YH439의 간장보호작용의 일부기전으로 해석되나 free radical 공격의 제어, 방어과정에 관련된 탐식세포의 역할등 간장독성에 관련된 YH439의 영향 및 관련된 기초연구는 완전히 확립되어 있지 않다. 본 연구에서는 상승적인 화학적 독성에 대한 YH439의 보호효과를 관찰하였다. Retinoyl palmiate (Vit-A)를 전처러하고 YH439를 처리한 rat의 경우 $CCl_4$ 단독투여군에 비하여 혈장 alanine aminotransferase (ALT)활성이 5배로 증가하여 $CCl_4$에 의한 간독성을 현저히 강화시켰으나, YH439와 Vit-A를 동시에 전처리한 rats에 있어서는 Vit-A에 의하여 강화된 독성이 94% 감소하였다. Vit-A에 의한 혈장 ALT 활성 증가는 Kupffer cell 활성을 선택적으로 억제하는 $GdCl_3$의 투여에 의해 완전히 차단되어 YH439가 Kupffer cell 활성억제를 매개로 상승적 간손상에 대하여 보호효과가 있음을 지지한다. Propyl sulfide의 전처치는 $CCl_4$에 의해 유도되는 간독성을 $CCl_4$ 단독투여와 비교했을때 5배 이상 증가시켰으나, Propyl sulfide와 YH439를 병용투여할 경우 propyl sulfide에 의해 강화되는 간독성이 YH439의 투여용량에 의존적으로 감소하였고, propyl sufide와 $CCl_4$에 의한 지질과산화의 증가가 YH439에 의하여 용량의존적으로 억제되는 것으로 나타났다. Propyl sulfide에 의하여 강화된 간독성의 차단은 YH439가 P450 2E1 발현조절을 통하여 간독성을 제어함을 지지한다. 그러나 YH439는 pyridine과 $CCl_4$에 의한 독성을 억제시키지 못하였다. 이는 Pyridine에 의해 유도되는 다른 형의 P450발현이 YH439에 의해 억제되지 못하는 이유로 해석된다. 중금속에 의해 유도되는 간독성에 대한 YH439의 보호효과를 ICR mice에서 관찰하였을 때 $CdCl_2$를 1회 투여할때 ALT와 aspartate aminotransferase (AST)활성이 $5{\sim}6$배 증가하였으나 YH439를 투여한 후 $CdC1_2$를 투여한 동물에 있어서는 투여후 6시간에 AST의 증가가 유의성 있게 억제되었다. 그러나 YH439는 thioacetamide에 의하여 유발된 liver fibrosis에는 개선효과가 없는 것으로 나타났다. 이러한 결과는 YH439가 Kupffer cell 불활성화를 통하여 Vit-A에 의해 유도되는 간독성을 효과적으로 방어하고, YH439에 의한 P450 2E1의 발현억제는 propyl sulfide를 경유하는 간독성 차단과 관계되며, YH439는 중금속으로 유도된 조직독성에 방어효과가 있음을 지지한다. The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ${\sim}5-fold$ increase in serum alanine aminotransferase (ALT) activity, as compared to $CCl_4$ treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of $GdCl_3$ a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated $CCl_4$ hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated $CCl_4-induced$ hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced $CCl_4-induced$ hepatotoxicity by >5-fold, relative to $CCl_4$ treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated $CCl_4$ hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of $CCl_4$ hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and $CCl_4-induced$ stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of $CCl_4$ toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the $CCl_4$ hepatotoicity by 23-fold, relative to $CCl_4$ alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating $CCl_4-induced$ hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

      • 상승적 화학적 간독성에 미치는 YH439의 영향

        김상건(Sang Geon Kim),조주연(Joo Youn Cho) 대한약리학회 1996 대한약리학잡지 Vol.32 No.3

        간독성물질인 CCl<sub>4</sub>의 대사에서 반응성이 높은 대사중간체의 증가가 P450 2E1의 활성 및 발현증가와 관련된다. YH439는 랫트에서 사염화탄소에 의하여 유발된 간 손상에 보호효과가 탁월하였고, 각종 독성물질에 의하여 발생하는 간염을 억제하며 P450 2E1의 발현을 억제하는 것으로 나타났다. P450 2E1의 발현억제가 YH439의 간장보호작용의 일부기전으로 해석되나 free radical 공격의 제어, 방어과정에 관련된 탐식세포의 역할등 간장독성에 관련된 YH439의 영향 및 관련된 기초연구는 완전히 확립되어 있지 않다. 본 연구에서는 상승적인 화학적 독성에 대한 YH439의 보호효과를 관찰하였다. Retinoyl palmiate (Vit-A)를 전처러하고 YH439를 처리한 rat의 경우 CCl<sub>4</sub> 단독투여군에 비하여 혈장 alanine aminotransferase (ALT)활성이 5배로 증가하여 CCl<sub>4</sub>에 의한 간독성을 현저히 강화시켰으나, YH439와 Vit-A를 동시에 전처리한 rats에 있어서는 Vit-A에 의하여 강화된 독성이 94% 감소하였다. Vit-A에 의한 혈장 ALT 활성 증가는 Kupffer cell 활성을 선택적으로 억제하는 GdCl<sub>3</sub>의 투여에 의해 완전히 차단되어 YH439가 Kupffer cell 활성억제를 매개로 상승적 간손상에 대하여 보호효과가 있음을 지지한다. Propyl sulfide의 전처치는 CCl<sub>4</sub>에 의해 유도되는 간독성을 CCl<sub>4</sub> 단독투여와 비교했을때 5배 이상 증가시켰으나, Propyl sulfide와 YH439를 병용투여할 경우 propyl sulfide에 의해 강화되는 간독성이 YH439의 투여용량에 의존적으로 감소하였고, propyl sufide와 CCl<sub>4</sub>에 의한 지질과산화의 증가가 YH439에 의하여 용량의존적으로 억제되는 것으로 나타났다. Propyl sulfide에 의하여 강화된 간독성의 차단은 YH439가 P450 2E1 발현조절을 통하여 간독성을 제어함을 지지한다. 그러나 YH439는 pyridine과 CCl<sub>4</sub>에 의한 독성을 억제시키지 못하였다. 이는 Pyridine에 의해 유도되는 다른 형의 P450발현이 YH439에 의해 억제되지 못하는 이유로 해석된다. 중금속에 의해 유도되는 간독성에 대한 YH439의 보호효과를 ICR mice에서 관찰하였을 때 CdCl<sub>2</sub>를 1회 투여할때 ALT와 aspartate aminotransferase (AST)활성이 5 ~ 6배 증가하였으나 YH439를 투여한 후 CdC1<sub>2</sub>를 투여한 동물에 있어서는 투여후 6시간에 AST의 증가가 유의성 있게 억제되었다. 그러나 YH439는 thioacetamide에 의하여 유발된 liver fibrosis에는 개선효과가 없는 것으로 나타났다. 이러한 결과는 YH439가 Kupffer cell 불활성화를 통하여 Vit-A에 의해 유도되는 간독성을 효과적으로 방어하고, YH439에 의한 P450 2E1의 발현억제는 propyl sulfide를 경유하는 간독성 차단과 관계되며, YH439는 중금속으로 유도된 조직독성에 방어효과가 있음을 지지한다. The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ~ 5-fold increase in serum alanine aminotransferase (ALT) activity, as compared to CCl<sub>4</sub> treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of GdCl<sub>3</sub> a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated CCl<sub>4</sub> hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated CCl<sub>4</sub>-induced hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced CCl<sub>4</sub>-induced hepatotoxicity by >5-fold, relative to CCl<sub>4</sub> treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated CCl<sub>4</sub> hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of CCl<sub>4</sub> hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and CCl<sub>4</sub>-induced stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of CCl<sub>4</sub> toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the CCl<sub>4</sub> hepatotoicity by 23-fold, relative to CCl<sub>4</sub> alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating CCl<sub>4</sub>-induced hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

      • KCI등재

        1,2-Benzothiazine 계열 새로운 항염진통제에 대한 약리작용 및 대사효소발현 유형의 연구

        김상건(Sang Geon Kim),조주연(Joo Youn Cho),권순경(Soon Kyung Kwon),이은방(Eun Bang Lee) 대한약학회 2000 약학회지 Vol.44 No.4

        Expression of xenobiotic-metabolizing enzymes can be altered by xenobiotics, which represents changes in the production of reactive metabolic intermediates as well as toxicities in tissues. Metabolic intermediates derived from xenobiotics are considered to produce the reactive oxygen species including drug free radicals and hydroxyl free radicals, which would be ultimately responsible for drug-induced toxicities. The effects of 1,2-benzothiazine anti-inflamniatory agents on the expression of xenobiotic-metabolizing enzymes including major cytochrome P450s, microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) were studied in the liver with the aim of providing the part of information on potential production of reactive metabolites and hepatotoxicity by the agents. The synthetic compounds 24, 36 and 39 exhibited anti-inflammatory effects in rats as assessed by the Randall-Selitto method. The anti-inflammatory effect was detected as early as at 30 min after gavaging the agents with the ED50 being noted at 80mg/kg, which was comparable to that of ibuprofen. Treatment of rats with each compound (100mg/kg, 3d) resulted in no significant induction in the immunochemically-detectable cytochromes P450 1A1/2, P450 2B1/2, P450 2C11 and P450 2E1. Changes in the mEH expression were also minimal, as evidenced by both Western blot and Northern blot analyses. Hepatic GST expression was slightly increased by the agents: GST Ya protein and mRNA expression was ~1.5-fold increased after treatment with compounds 24 and 39, whereas GST Yb1/2 and Yc1/2 mRNA levels were elevated 2- to 3-fold. In summary, the effects of the synthetic 1,2-benzothiazines on the expression of major P450, mEH and GST were not significant, providing evidence that metabolic activation of the agents, potential drug interaction and hepatotoxicity would be minimal.

      • KCI등재

        Ouabain 점적투여 후 토끼심장에 있어서 3H-Ouabain 결합에 관한 연구

        김상건(Sang Geon Kim),김낙두(Nak Doo Kim) 대한약학회 1986 약학회지 Vol.30 No.3

        Many experiments have showed that the sodium and potassium ion transporting system and the Na, +K+-ATPase activity of membrane fragments are inhibited by digitalis glycosides and that the pump may be associated with the pharmacological receptor for the drugs. The aim of our investigation is to elucidate the ouabain binding sites occupation in heart following infusion of ouabain to intact animals by the 3H-ouabain binding assay. Lethal dose and 26 percent of lethal dose of ouabain were infused to intact rabbit through ear vein. Microsomal fraction was fractionated from ouabain treated rabbit heart. 3H-ouabain binding to these fraction in vitro was studied by the Schwartz's method. 3H-ouabain binding to heart microsomal fraction was also studied following infusion of ginseng ethanol extract and caffeine to rabbits respectively. 1) The infusion of lethal dose ouabain (113mcg/kg) inhibited the specific 3H-ouabain binding to rabbit heart microsomal fraction to the level of 60% (p<0.01) of control group and the infusion of 26% of lethal dose of ouabain led to the level of 79% (p<0.01) of the control group. 2) Time course of binding of 0.4mcM 3H-ouabain to microsomal fraction from rabbit heart following infusion of lethal and 26% of lethal dose of ouabain showed dose dependence at various incubation time. 3) Compared with control, only slight change of Kd and Bmax was detected in in vitro 3H-ouabain binding after infusion of ginseng ethanol extract (300mg/kg) to rabbit. 4) In caffeine infusion group, 3H-ouabain binding yielded nearly the same results as control group.

      • KCI등재

        비타민 A 및 피리딘으로 유발된 사염화탄수 유발성 간독성에 대한 2-(알릴티오)피라진의 보호효과: (phi)x-174 DNA 손상에 미치는 효과

        김상건(Sang Geon Kim),조주연(Joo Youn Cho),최성희(Sung Hee Choi),김낙두(Nak Doo Kim) 대한약학회 1996 약학회지 Vol.40 No.6

        2-(Allylthio)pyrazine is effective in selectively suppressing constitutive and inducible expression of cytochrome P450 2E1. The effect of 2-(allylthio)pyrazine against potentiated chemical injury was studied in rats. Vitamin-A pretreatment of rats substantially increased carbon tetrachloride hepatotoxicity, as supported by an ~4-fold increase in serum alanine aminotransferase (ALT) activity. Concomitant pretreatment of rats with 2-(allylthio)pyrazine at the daily dose of 200mg/kg resulted in a 76% decrease in vitamin-A-potentiated hepatotoxicity, which supported the possibility that 2-(allylthio)pyrazine protects the liver against chemical-induced hepatic injury by the mechanism associated with Kupffer cell inactivation. Pyridine pretreatment caused substantial enhancement in carbon tetrachloride hepatotoxicity. 2-(Allylthio)pyrazine treatment of rats reduced the pyridine-potentiated toxicity in a dose-dependent manner. Animals treated with both pyridine and 2-(allylthio)pyrazine prior to intoxicating dose of CCl4 resulted in 85% and 47% decreases in pyridine-increased triglycerides and cholesterol levels in the liver. The protective effect of 2-(allylthio)pyrazine on the DNA strand breakage induced by benzenetriol was assessed by measuring the conversion of supercoiled (phi)x-174 DNA to the open relaxed form. 2-(Allylthio)pyrazine blocked the benzenetriol-induced conversion of supercoiled DNA to open circular form in a dose-dependent manner. The presence of 2-(allylthio)pyrazine at the doses from I to 10mM in the incubation mixture containing 5mcM benzenetriol completely protected benzenetriol-induced DNA strand breakage with the EC50 for the 2-(allylthio)pyrazine blocking being noted as ~220mcM, whereas allyl disulfide exerted protecting effect at relatively high concentrations (i.e. ~850mcM), suggesting that 2-(allylthio)pyrazine effectively scavenges the reactive oxygen species. These results provide evidence that 2-(allylthio)pyrazine blocks vitamin A- or pyridine-potentiated CCl4 hepatotoxicity and that the agent is active in protecting DNA by scavenging the reactive oxygen species.

      • PARALLEL SYMPOSIUM 1 : Role of MicroRNAs in Liver Injury and Metabolism

        김상건 ( Sang Geon Kim ) 대한간학회 2013 춘·추계 학술대회 (KASL) Vol.2013 No.1

        The liver is the principal organ that regulates general energy homeostasis. The prevalence of metabolic syndrome, as characterized by insulin resistance, dyslipidemia, and obesity, has dramatically increased and often causes liver disease; insulin resistance dampens insulin sensitivity in the liver as well as other peripheral organs, being closely linked to its progression to steatohepatitis or other liver diseases. MicroRNAs are small non-coding RNAs that modulate gene function at the post-transcriptional level. Alterations in their expression levels have recently emerged as key factors responsible for the progression of acute and/or chronic liver diseases. We have discovered a molecular target of specific miRNA (miR-199a-3p) that induces hepatic cell injury in cirrhotic patients, facilitating progression of the liver disease. Studies from this laboratory also highlighted the functional role of miRNA-122 in the dysregulation of hepatic insulin sensitivity. In the present talk, the information on the miRNAs that are altered by liver disease and/or are responsible for the progression of metabolic liver disease will be delivered. Specifically, the targets associated with the vicious cycle between metabolic syndrome and liver disease progression will be discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼