RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Open Access : Expression patterns of TRα and CRABPII genes in Chinese cashmere goat skin during prenatal development

        ( Tao Zhong ),( Wei Zhao ),( Zhongqiang Zhou ),( Li Li ),( Linjie Wang ),( Hua Li ),( Hongping Zhang ) 한국동물자원과학회(구 한국축산학회) 2015 한국축산학회지 Vol.57 No.28

        Background: The physiologic characteristics of the cashmere trait and many of the differentially expressed genes relevant to hair cycling have been extensively studied, whereas genes involved in the prenatal development of hair follicles have been poorly investigated in cashmere goats. The aim of this study, therefore, was to quantify the time-course changes in the expressions of TRα and CRABPII genes in the fetal skin of Chinese cashmere goats at the multiple embryonic days (E70, E75, E80, E90, E100, E120 and E130) using real-time quantitative PCR (RT-qPCR). Results: RT-qPCR showed that TRα was expressed at E70 with relatively high level and then slightly decreased (E75, E80, and E90). The highest expression of TRα mRNA was revealed at E130 (P > 0.05). The expression pattern of CRABPII mRNA showed an ``up-down-up`` trend, which revealed a significantly highest expression at E75 (P < 0.05) and was down-regulated during E80 to E120 (P < 0.05) and mildly increased at E130, subsequently. Conclusion: This study demonstrated that TRα and CRABPII genes expressed in different levels during prenatal development of cashmere. The present study will be helpful to provide the comprehensive understanding of TRα and CRABPII genes expressions during cashmere formation and lay the ground for further studies on their roles in regulation of cashmere growth in goats.

      • KCI우수등재

        Expression patterns of TRα and CRABPII genes in Chinese cashmere goat skin during prenatal development

        Zhong, Tao,Zhao, Wei,Zhou, Zhongqiang,Li, Li,Wang, Linjie,Li, Hua,Zhang, Hongping Korean Society of Animal Science and Technology 2015 한국축산학회지 Vol.57 No.8

        Background: The physiologic characteristics of the cashmere trait and many of the differentially expressed genes relevant to hair cycling have been extensively studied, whereas genes involved in the prenatal development of hair follicles have been poorly investigated in cashmere goats. The aim of this study, therefore, was to quantify the time-course changes in the expressions of $TR{\alpha}$ and CRABPII genes in the fetal skin of Chinese cashmere goats at the multiple embryonic days (E70, E75, E80, E90, E100, E120 and E130) using real-time quantitative PCR (RT-qPCR). Results: RT-qPCR showed that $TR{\alpha}$ was expressed at E70 with relatively high level and then slightly decreased (E75, E80, and E90). The highest expression of $TR{\alpha}$ mRNA was revealed at E130 (P > 0.05). The expression pattern of CRABPII mRNA showed an 'up-down-up' trend, which revealed a significantly highest expression at E75 (P < 0.05) and was down-regulated during E80 to E120 (P < 0.05) and mildly increased at E130, subsequently. Conclusion: This study demonstrated that $TR{\alpha}$ and CRABPII genes expressed in different levels during prenatal development of cashmere. The present study will be helpful to provide the comprehensive understanding of $TR{\alpha}$ and CRABPII genes expressions during cashmere formation and lay the ground for further studies on their roles in regulation of cashmere growth in goats.

      • KCI등재

        Ionic liquid gating control of magnetic anisotropy in Ni0.81Fe0.19 thin films

        Chunlei Li,Shishun Zhao,Ziyao Zhou,Bin Peng,Zhongqiang Hu,Ming Liu 한국물리학회 2020 Current Applied Physics Vol.20 No.7

        Voltage control magnetism is one of the most energy efficient pathway towards magnetoelectric (ME) device. Ionic liquid gating (ILG) method has already shown impressive manipulation power at the IL/electrode interface to influence the structure, orbital as well as spin of the electrode materials. As key material in anisotropy magnetoresistance sensor and spin valve heterostructure, the permalloy Ni0.81Fe0.19 was utilized as the electrode to investigate the ILG induced magnetic anisotropy change. In this work, we realized magnetic anisotropy control in Au/[DEME]+[TFSI]-/Ni0.81Fe0.19 (2.5 nm)/Ta heterostructure via ILG caused electrostatic doping. This is evidenced in situ reversible ferromagnetic field (Hr) shift with electron spin resonance (ESR) spectrometer. Aiming at the question whether the charge accumulation at the ionic liquid interface is the main control mechanism at low voltage, we carefully tested the relationship between the change of resonance field and the amount of surface charge. It was found that these two had a good linear relationship between −1 V and +1 V. Defining the linear parameter as A whose value is 28.7 mT m2/Col. Unlike previously reported chemical regulation of Co, this article used ionic liquids to physically regulate NiFe, which has not been studied in the previous ionic liquid regulation. And NiFe has a narrower resonance line width for easy reference to microwave devices. In addition, It also has a stronger ferromagnetic signal than Co, which can be more easily detected as a sensor device. Therefore, this system is more promising. The ILG control NiFe may lead to a new kind of magnetoelectric sensor devices and path a new way to low energy consumption spintronics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼