RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A New Concept on Resources Circulation Policy for Electric Vehicles in Korea (Republic of)

        ( Yong Choi ),( Hyeong-jin Choi ),( Sueng-whee Rhee ) 한국폐기물자원순환학회(구 한국폐기물학회) 2019 ISSE 초록집 Vol.2019 No.-

        Globally, advanced countries will be prohibiting the sale of vehicles using internal combustion engine and promoting the supply of electric vehicles in order to reduce fine dust, air pollutants and carbon dioxide from vehicles. In Korea, 430,000 electric vehicles will be supplied by 2022 according to the atmospheric environmental policy. As the market for electric vehicles may be expanding at home and abroad, lithium ion secondary batteries from electric vehicles will be expected to be generated as wastes gradually. The lithium ion secondary batteries contain various valuable materials such as lithium, cobalt, manganese, nickel, iron, etc. According to Korea Mineral Resource Information Service (KOMIS), the price of lithium increased 2.1 times from 7,576 U$/ton in 2015 to 15,534 U$/ton in 2018. The price of cobalt increased 2.5 times from 28,613 U$/ton to 72,824 U$/ton during the same period. Therefore, it is industrially very economical that valuable materials are recovered from the lithium ion secondary battery. In advanced countries, various resources circulation policies are being used to recover and recycle lithium ion secondary batteries in electric vehicles. In the European Union and Japan, the lithium ion secondary batteries are managed by the Expanded Producer Responsibility (EPR) system and a recycling council was established to recycle the lithium ion secondary batteries continuously. Also, China announced regulations on the recycling of lithium ion secondary batteries for vehicles in 2015, strengthening resources circulation capacity for lithium ion secondary batteries. Electric vehicles are being promoted in Korea but the resources circulation policy for lithium ion secondary batteries is insufficient. In this study, the current status of resources circulation policy for lithium ion secondary batteries from electric vehicles in advanced countries is reviewed. In Korea, a new concept on the policy for the activation of resources circulation for lithium ion secondary battery should be introduced step by step including production, consumption, collection and recycling stage. The new concept of resources circulation policy can be applied in many fileds, including the securing of recycling technology, the construction of capacity build, and the establishment of management system such as EPR system.

      • KCI등재

        리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도

        김대현,김대희,서화일,김영철,Kim, Dae-Hyun,Kim, Dae-Hee,Seo, Hwa-Il,Kim, Yeong-Cheol 한국전기화학회 2010 한국전기화학회지 Vol.13 No.4

        본 연구는 밀도 범함수 이론을 이용하여 Li이온전지에 사용되는 Li코발트 산화물에서의 Li이온 삽입 전압과 전도에 관한 것이다. Li이온은 Li코발트 산화물 원자구조의 각 층을 1개씩 채우거나 한 층을 다 채우고 다음 층을 채울 수 있다. 평균 삽입 전압은 3.48V로 동일하나, 전자가 후자보다 더 유리하였다. 격자상수 c는 Li농도가 0.25보다 작을 때는 증가하였으나, 0.25보다 클 때는 감소하였다. Li농도가 증가하면, Li코발트 산화물에서의 Li이온 전도를 위한 에너지 장벽은 증가하였다. Li이온전지가 방전 중 출력 전압이 낮아지는 현상은 Li농도 증가에 따른 삽입 전압의 감소와 전도 에너지 장벽의 증가로 설명할 수 있었다. We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.

      • KCI등재

        리튬 이온 배터리의 가스 발생 특성에 대한 연구

        이준혁(Joon-Hyuk Lee),홍성호(Sung-Ho Hong),이흥수(Heung-Su Lee),박문우(Moon-Woo Park) 한국화재소방학회 2021 한국화재소방학회논문지 Vol.35 No.5

        리튬이온배터리 화재 및 폭발의 주요 원인 중 하나는 배터리에서 발생하는 가연성 가스이며, ESS와 같이 배터리 다수가 밀집된 경우 열폭주 및 화재 전이로 인한 위험성이 크다. 이에 따라 국내·외에서 리튬이온배터리의 가스 발생 및열폭주 현상을 예측하고 예방하기 위한 연구가 다수 진행되고 있으나 아직 현재진행형인 실정이다. 따라서, 본 연구에서는 리튬이온배터리 열폭주 전후에 발생하는 가스를 분석하여 열폭주로 인한 위험을 경감시킬 수 있는 기반을 마련하고자 한다. 발생 되는 가스의 종류 및 특성 등을 파악하여 열폭주 시 조기 감지에 의한 예방의 토대를 구축하는 것이다. 실험을 위해 리튬이온배터리를 외관별(원통형, 각형, 파우치형), 양극재별(NCM, NCA, LFP)로 구분하였고 가로, 세로,높이가 각 1.5 m인 챔버 내에서 리튬이온배터리에 열적 이상 조건을 가하여 시간별로 발생하는 가스를 측정하였다. 가스 측정을 위해 FT-IR 분석장치를 사용하였으며, 별도의 수소 센서를 챔버 내에 설치하여 리튬이온전지의 시간별 가스종류 및 측정량 변화를 분석하였다. 실험 결과, 모든 리튬이온배터리에서 CO2와 CO가 가장 많이 발생 되었다. 열폭주이후 각형 및 파우치형에서는 CO2는 증가하고 CO가 감소하였으며, 원통형에서는 CO2와 CO 모두 증가하였다. 독성가스인 HF와 폭발범위가 넓은 H2 또한 발생되었으며, 두 가스의 농도는 상호 간 반비례 관계를 나타냈다. A main cause of fires and explosions in lithium-ion batteries is the generation of combustible gases by them, and whena large number of batteries are densely packed, like in an Energy Storage System, there is a high risk of thermal runawayand fire propagation. Currently, many studies are being conducted worldwide to predict and prevent the generation ofcombustible gases, and thermal runaway in lithium-ion batteries, but they are still in progress. Therefore, in this study, weanalyzed the gases generated before and after thermal runaway in lithium ion batteries, to prepare a basis for reducing therisk of thermal runaway. We aimed to establish the basis for prevention by early detection in the event of thermal runaway,by understanding the type and characteristics of the generated gases. For the experiment, lithium ion batteries were classifiedin terms of appearance (cylindrical, prismatic, pouch type), and cathode materials (NCM, NCA, LFP). The gases generatedwas measured against time. An FT-IR analyzer was used for gas measurement, and a separate hydrogen sensor was installedin the chamber to analyze changes in the types of gas, and measure the mass of the lithium ion battery over time. In theexperiment, CO2 and CO were generated the most during thermal runaway in all lithium-ion batteries. Thereafter, CO2increased, and CO decreased in the prismatic and pouch types, and both CO2 and CO increased in the cylindrical type. HF(a toxic gas), and H2 having a wide explosive range, were also generated, and the concentrations of these gases were inverselyproportional to each other.

      • SCIESCOPUSKCI등재

        Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

        Chang, Choong-koo,Sulley, Mumuni The Korean Institute of Electrical Engineers 2018 Journal of Electrical Engineering & Technology Vol.13 No.6

        The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

      • Unveiling origin of additional capacity of SnO<sub>2</sub> anode in lithium-ion batteries by realistic <i>ex situ</i> TEM analysis

        Lee, Seung-Yong,Park, Kyu-Young,Kim, Won-Sik,Yoon, Sangmoon,Hong, Seong-Hyeon,Kang, Kisuk,Kim, Miyoung Elsevier 2016 Nano energy Vol.19 No.-

        <P><B>Abstract</B></P> <P>The SnO<SUB>2</SUB> material has been considered as a promising lithium-ion battery anode candidate, and recently, the importance has been increased due to its high performance in sodium-ion batteries. Remarkably, the SnO<SUB>2</SUB> lithium-ion battery anode usually shows extra specific capacity that greatly exceeds the theoretical value. Partial reversibility of conversion reaction has been commonly considered to contribute the extra capacity, however, this has not clearly solved due to the indirect experimental evidences. Here, a realistic <I>ex situ</I> transmission electron microscopy (TEM) analysis technique was developed to reveal the origin of the extra capacity. We demonstrate that reactions of Li<SUB>2</SUB>O phase contribute to the extra capacity and the reverse conversion reaction of SnO<SUB>2</SUB> hardly occurs in the real battery system. This work provides significant implications for establishing an accurate electrochemical reaction mechanism of SnO<SUB>2</SUB> lithium-ion battery anode, which may lead to inspiration on enhancing performance of the SnO<SUB>2</SUB> anode in lithium- and sodium-ion batteries as well. Furthermore, the robust <I>ex situ</I> TEM experimental approach we have introduced is extensively applicable to analyses of various battery electrode materials.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Realistic <I>ex situ</I> TEM experimental technique for analysis of batteries was developed. </LI> <LI> Decreasing reactions of lithium oxide are mainly related with the extra capacity. </LI> <LI> Reverse conversion reaction of SnO<SUB>2</SUB> is scarcely possible. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Origin of extra capacities and partial reversibility of conversion reaction in SnO<SUB>2</SUB>/Li battery was investigated by transmission electron microscopy (TEM) studies. We applied the specialized <I>ex situ</I> TEM analysis technique to solve the controversial phenomena in the actual battery-operating environment. The experimental results show that lithium oxide phases are mainly related with the extra capacities and the conversion reaction does not seem to be reversible.</P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석

        김병욱 ( Byoungwook Kim ),박지수 ( Ji Su Park ),장홍준 ( Hong-jun Jang ) 한국정보처리학회 2023 정보처리학회논문지. 소프트웨어 및 데이터 공학 Vol.12 No.3

        리튬 이온 배터리는 사용 환경과 양극재 조합 비율에 따라 배터리의 성능이 좌우된다. 고성능 리튬 이온 배터리를 개발하기 위해서는 양극재 비율을 다양하게 변화시켜가면서 배터리를 제작하고 성능을 측정해야 한다. 하지만 모든 변수 조합에 대해 배터리를 제작하고 성능을 측정하기에는 많은 시간과 비용이 소모된다. 그렇기 때문에 최근에는 데이터 기반으로 인공지능 모델을 활용하여 배터리의 성능을 예측하고자 하는 연구가 활발히 진행되고 있다. 그러나 기존 공개 배터리 데이터는 동일한 배터리로 측정 실험을 하였기 때문에 양극재 조합 비율은 고정되어 있어서 데이터 속성으로 포함되지 않았다. 본 논문에서는 양극재 소재 조합 비율에 따른 배터리의 성능을 예측할 수 있는 인공지능 모델 개발에 필요한 학습 데이터 모델을 정의한다. 우리는 리튬 이온 배터리의 성능에 영향을 미칠 수 있는 요인을 분석하여 양극재 소재별 질량과 배터리 사용 환경을 입력데이터로, 배터리의 출력과 용량을 목적 데이터로 정의하였다. 공개 배터리 데이터 중에는 양극재 비율이 포함된 데이터가 없어 양극재 비율을 모두 동일한 값으로 설정한 제한된 데이터로 다중 선형회귀 분석, 서포트 벡터 회귀분석, 다중 로지스틱 회귀 분석, LSTM 분석을 수행하였다. 실험 환경이 다른 배터리 데이터에서 각각의 배터리 데이터는 고유한 패턴을 유지하였으며, 배터리 분류 모델은 각각의 배터리를 약 2%의 오차로 분류하는 것으로 나타났다. The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

      • KCI등재후보

        패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li<sub>2</sub>CO<sub>3</sub>의 나노스케일 패턴화 방법

        강영림,박태완,박은수,이정훈,왕제필,박운익,Kang, Young Lim,Park, Tae Wan,Park, Eun-Soo,Lee, Junghoon,Wang, Jei-Pil,Park, Woon Ik 한국마이크로전자및패키징학회 2020 마이크로전자 및 패키징학회지 Vol.27 No.4

        지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다. For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

      • KCI등재

        Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

        Choong-koo Chang,Mumuni Sulley 대한전기학회 2018 Journal of Electrical Engineering & Technology Vol.13 No.6

        The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

      • SCIESCOPUSKCI등재

        Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

        Jinho Park,Byoungkuk Lee,Do-Yang Jung,Dong-Hee Kim 대한전기학회 2018 Journal of Electrical Engineering & Technology Vol.13 No.5

        In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

      • KCI등재

        리튬이온 배터리 동특성 및 안전성 평가를 위한 배터리 시뮬레이터 시험설비

        정성인,윤용호,Sungin Jeong,Yongho Yoon 한국인터넷방송통신학회 2024 한국인터넷방송통신학회 논문지 Vol.24 No.2

        Lithium-ion batteries are used in many fields due to their high energy density, fast charging conditions, and long cycle life. However, overcharging, over-discharging, physical damage, and use of lithium-ion batteries at high temperatures can reduce battery life and cause damage to people due to fire or explosion due to damage to the protection circuit. In order to reduce the risk of these batteries and improve battery performance, the characteristics of the charging and discharging process must be analyzed and understood. Therefore, in this paper, we analyze the charging and discharging characteristics of lithium-ion batteries using a battery charger and discharger and simulator to reduce the risk of loss of life due to overcharge and overdischarge, as well as casualties from fire and explosion due to damage to the protection circuit.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼