RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Visible-light-driven photocatalyst of La–N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism

        Junjing Li,Bo Li,Jiejing Li,Junliang Liu,Liang Wang,Hongwei Zhang,Zhaohui Zhang,Bin Zhao 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.25 No.-

        In this study, La, N codoped TiO2 (La–N–TiO2) nano-photocatalyst was fabricated through simple sol–gel method. The resulting samples were characterized through X-ray diffraction (XRD), scanning electrons microscope (SEM), transmission electrons microscope (TEM), X-ray photoelectron spectroscopy (XPS) and UV–visible light diffuse reflection spectroscopy (UV–vis DRS). Results revealed that La elements were not implanted into the structure of TiO2 but existed as the form of Ti–O–La bonds in the interstitial site, while N dopants were incorporated into the lattice of TiO2 and coexisted in the substitutional N (N– Ti–O) and interstitial N (Ti–O–N) in the La–N–TiO2 catalyst, thereby resulting in the formation of new impurity energy level between the forbidden band and greatly enhancement of light absorption ability in visible light region. The enhanced visible light driven (VLD) photocatalytic (PC) performance for the degradation of phenol aqueous solution could be attributed to the intense light absorbance in visible light region and high separation efficiency of photogenerated charge carriers.

      • Optimized Iterative Algorithm for Energy-Efficient Power Allocation in Two-tier Heterogeneous Networks

        Wang Junliang,Li Wenjia,Liu Haitao 보안공학연구지원센터 2016 International Journal of Hybrid Information Techno Vol.9 No.12

        In heterogeneous networks, the issue of interference between femtocells and macrocells should be carefully considered. Resource allocation schemes with cognitive technologies have been a key challenge to manage interference. In this paper, we investigate price-based power allocation strategies with the energy efficiency criterion for a spectrum-sharing heterogeneous cognitive network from the aspect of energy efficiency, and provide the utility function of macrocell and femtocells based on a non-cooperative Stackleberg game model. We build a combination of price vector and power allocation values by standard Lagrangian method and propose an improved iteration algorithm based on price updating to obtain the Stackleberg equilibrium solution. The simulation results verify the proposed method can improve energy efficiency and achieve better utility.

      • KCI등재후보

        Flexural performance test of a prestressed concrete beam with plastic bellows

        Xuansheng Cheng,Junliang Hong,Liang Ma,Guoliang Li 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.79 No.2

        The flexural performance of 8 types of prestressed concrete beams with plastic bellows under different grouting compactness is examined in this paper. By applying concentrated load and symmetrical load to 8 types of prestressed concrete test beams with plastic bellows, the flexural performance test of each test beam is carried out, and the mechanical characteristics and failure morphology of each test beam under different grouting compactness are discussed. The influence of duct grouting compactness on the strain of steel bars and concrete, mid-span deflection and stiffness of prestressed concrete beam are analyzed. The results show that the cracking load and ultimate load of the test beam increases constantly with the increase of the duct grouting compactness, and the flexural bearing capacity of prestressed concrete beams has also been significantly improved. After the concrete is cracked, the mid-span deflection of the prestressed concrete beam gradually decreases with the increase of the duct grouting compactness under the same load form and load grade. At the same load grade, the mid-span deflection change of prestressed concrete beams under concentrated load is much larger than that under symmetric load. The ductility coefficient of prestressed concrete beams with plastic bellows decreases as the grouting compactness increases. In engineering practice, the quality of duct grouting compactness about the prestressed concrete beam should be strictly controlled and improved.

      • KCI등재

        Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

        Xiao Sun,Junliang Tao,Jiale Li,Qingli Dai,Xiong Yu 국제구조공학회 2017 Smart Structures and Systems, An International Jou Vol.20 No.3

        The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with -5°, 0°, and +5° flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

      • SCIESCOPUSKCI등재

        Effects of Chitosan on Body Weight Gain, Growth Hormone and Intestinal Morphology in Weaned Pigs

        Xu, Yuanqing,Shi, Binlin,Yan, Sumei,Li, Tiyu,Guo, Yiwei,Li, Junliang Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.10

        The study was conducted to determine the effects of chitosan on the concentrations of GH and IGF-I in serum and small intestinal morphological structure of piglets, in order to evaluate the regulating action of chitosan on weaned pig growth through endocrine and intestinal morphological approaches. A total of 180 weaned pigs (35 d of age; $11.56{\pm}1.61kg$ of body weight) were selected and assigned randomly to 5 dietary treatments, including 1 basal diet (control) and 4 diets with chitosan supplementation (100, 500, 1,000 and 2,000 mg/kg, respectively). Each treatment contained six replicate pens with six pigs per pen. The experiment lasted for 28 d. The results showed that the average body weight gain (BWG) of pigs was improved quadratically by dietary chitosan during the former 14 d and the later 14 d after weaned (p<0.05). Furthermore, dietary supplementation of chitosan tended to quadratically increase the concentration of serum GH on d 14 (p = 0.082) and 28 (p = 0.087). Diets supplemented with increasing levels of chitosan increased quadratically the villus height of jejunum and ileum on d 14 (p = 0.089, p<0.01) and 28 (p = 0.074, p<0.01), meanwhile, chitosan increased quadratically the ratio of villus height to crypt depth in duodenum, jejunum and ileum on d 14 (p<0.05, p = 0.055, p<0.01) and 28 (p<0.01, p<0.01, p<0.01), however, it decreased quadratically crypt depth in ileum on d 14 (p<0.05) and that in duodenum, jejunum and ileum on d 28 (p<0.01, p<0.05, p<0.05). In conclusion, these results indicated that chitosan could quadratically improve growth in weaned pigs, and the underlying mechanism may due to the increase of the serum GH concentration and improvement of the small intestines morphological structure.

      • KCI등재

        Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

        Fu Chen,Zhang Bangxing,Guo Tiankang,Li Junliang 대한영상의학회 2024 Korean Journal of Radiology Vol.25 No.1

        Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.

      • Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite

        Lin, Jia,Chen, Hong,Gao, Yang,Cai, Yao,Jin, Jianbo,Etman, Ahmed S.,Kang, Joohoon,Lei, Teng,Lin, Zhenni,Folgueras, Maria C.,Quan, Li Na,Kong, Qiao,Sherburne, Matthew,Asta, Mark,Sun, Junliang,Toney, Mic National Academy of Sciences 2019 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.116 No.47

        <P><B>Significance</B></P><P>Metal halide perovskites attract great interest for a wide range of applications due to their remarkable optoelectronic properties. The development of environmentally friendly halide perovskite materials with various crystal structures and compositions offers unprecedented opportunities to achieve desired properties and applications. In this work, we demonstrated an In-based, charge-ordered all-inorganic halide double perovskite with the composition of Cs<SUB>2</SUB>In(I)In(III)Cl<SUB>6</SUB> synthesized by solid-state reaction. High-pressure optical properties were studied, and a pressure-driven, fully reversible semiconductor–metal phase transition was discovered. This In-based charge-ordered structure may inspire new understanding of halide perovskite as well as provide a platform for future discovery of exotic electronic phenomena such as high-<I>T</I><SUB>C</SUB> superconductivity in halide perovskite compounds.</P><P>Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In<SUP>+</SUP>/In<SUP>3+</SUP>) inorganic halide perovskite with the composition of Cs<SUB>2</SUB>In(I)In(III)Cl<SUB>6</SUB> in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group <I>I</I>4/<I>m</I> with <I>a</I> = 17.2604(12) Å, <I>c</I> = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼