RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction

        Li Yansong,Jiang Tao,Du Mengyu,He Shuxuan,Ning Huang,Cheng Bo,Yan Chaoying,Tang Wenxin,Gao Wei,Guo Hongyan,Li Qiao,Wang Qiang 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.

      • Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix

        ( Hongyan Li ),( Hyung Min Jeong ),( You Hee Choi ),( Sung Ho Lee ),( Hye Gwang Jeong ),( Tae Cheon Jeong ),( Kwang Youl Lee ) 영남대학교 약품개발연구소 2013 영남대학교 약품개발연구소 연구업적집 Vol.23 No.0

        Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3αregulates osteogenic activity of Osterix. ⓒ2013 Elsevier inc. All rights reserved.

      • KCI등재

        팬데믹 영향 하의 패션 마스크 디자인 경향 및 의미 분석

        이홍연 ( Hongyan Li ),임은혁 ( Eunhyuk Yim ) 복식문화학회 2021 服飾文化硏究 Vol.29 No.3

        During the COVID-19 pandemic, the obligatory wearing of masks has led to increased consumer demand and the diversification of mask design. Accordingly, it is necessary to understand the inner meaning and characteristics of masks in the pandemic situation. Therefore, the purpose of this research is to analyze the characteristics of fashionable masks and their new cultural meaning under the COVID-19 pandemic. This research is based on literature review and empirical research. Drawing on an investigation of the historical evolution of masks and their transition under the pandemic (exhibiting differences in mask culture among countries and regions), this study analyzed 54 distinctive fashion masks designed by fashion brands and influencers that appeared from January 2020 to January 2021. The characteristics of fashion masks identified under the influence of the pandemic are as follows: Message delivery on political issues and human rights; psychological defense and expression of individuality; and conspicuous display via luxurious materials and luxury brand logos; moreover, the design of the mask uses the same material, color, pattern, decoration, and other methods as clothing to achieve the overall style. Over the course of the pandemic (and even in post-pandemic lifestyle), fashion masks are becoming more diversified conveying new social and cultural meanings.

      • KCI등재

        Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy

        Luo Hongyan,Yang Lirong,Zhang Guoqing,Bao Xi,Ma Danna,Li Bo,Cao Li,Cao Shilu,Liu Shunyao,Bao Li,E Jing,Zheng Yali 한국유전학회 2024 Genes & Genomics Vol.46 No.5

        Background TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. Objective This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. Methods We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. Results Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. Conclusion Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN. Background TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. Objective This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. Methods We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. Results Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. Conclusion Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.

      • KCI등재

        Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

        Hongyan Zhao,Trillion Q. Zheng,Yan Li,Jifei Du,Pu Shi 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.1

        Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

      • KCI등재

        Synthesis, Crystal Structures and Properties of Two 3D CdII and ZnII Complexes with a 3-Fold Interpenetrating Feature

        Hongyan Lin,Fangfang Sui,Peng Liu,Xiu-Li Wang,Guo-Cheng Liu 대한화학회 2013 Bulletin of the Korean Chemical Society Vol.34 No.7

        Two new 3D coordination complexes [Cd(3-bpcd)(pht)] (1) and [Zn(3-bpcd)(pht)] (2) [3-bpcd = N,N'-bis(pyridin- 3-yl)cyclohexane-1,4-dicarboxamide, H2pht = phthalic acid] have been hydrothermally synthesized. X-ray diffraction analysis reveals that the complexes 1 and 2 represent a 4-connected diamondoid topology with a 3- fold interpenetrating feature. Moreover, the fluorescent properties of complexes 1 and 2 are studied.

      • KCI등재

        Coal slime waste: a promising precursor to develop highly porous activated carbon for supercapacitors

        Li Jiajia,Hu Jiajun,Wang Kai,Xia Hongyan 한국탄소학회 2020 Carbon Letters Vol.30 No.6

        Efective processing and use of coal slime is of great signifcance to protect the environment and save resources. Diferent coal slimes (untreated with 43 wt% ash content, crushed and fotation treated with 10 wt% ash content, and pre-carbonized) were activated with KOH to prepare porous activated carbon. The results show the activated carbon prepared from coal slime with 10 wt% ash had high specifc surface area (3037 m2 /g) and pore volume (1.66 cm3 /g), which was ascribed to the suitable contents of minerals as template and oxygen-containing functional groups. Electrochemical measurements exhibited the best specifc capacitance of 220 F/g at 0.1 A/g and the cycle stability of over 100% capacitance retention after 1000 cycles at 5 A/g in 6 M KOH solution. Due to the high specifc surface area, superior electrochemical performance, and facile and low cost, developing highly porous activated carbon for supercapacitors is one alternative way for efective use of coal slime waste.

      • KCI등재

        Study on a Novel Switching Pattern Current Control Scheme Applied to Three-Phase Voltage-Source Converters

        Hongyan Zhao,Yan Li,Trillion Q. Zheng 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.6

        This paper presents a novel switching pattern current control (SP-CC) scheme, which is applied in three-phase voltage-source converters (VSCs). This scheme can select the optimal output switching pattern (SP) by referring the basic principle of space vector modulation (SVM). Moreover, SP-CC is a method without a carrier wave. Thus, the implementation process is concise and easy. When compared with the conventional hysteresis current control (C-HCC) and the space vector-based hysteresis current control (SV-HCC), the SP-CC has the performances of faster dynamic response of C-HCC and less switching number (SN) of SV-HCC. In addition, it has less harmonic contents in the three-phase current, along with a lower switching loss and a higher efficiency. Moreover, the hysteresis bandwidth and Clarke conversion are not required in the SP-CC. The effectiveness of the presented SP-CC is verified by simulation and experimental test results. In addition, the advantages of the SP-CC, when compared with the C-HCC and SV-HCC, are verified as well.

      • KCI등재

        Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System

        ( Hongyan Zhao ),( Hai Ru Yu ),( Xu Feng Yuan ),( Ren Zhe Piao ),( Hu Lin Li ),( Xiao Fen Wang ),( Zong Jun Cui ) 한국미생물 · 생명공학회 2014 Journal of microbiology and biotechnology Vol.24 No.5

        To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of 3.3 × 10(8) copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼