RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Current approaches for assisted oocyte maturation in camels

        Islam M. Saadeldin,Jongki Cho 한국동물생명공학회(구 한국동물번식학회) 2021 Journal of Animal Reproduction and Biotechnology Vol.36 No.3

        Camel (camelus dromedarius) is a unique large mammalian species that can survive harsh environmental conditions and produce milk, meat, and wool. Camel reproduction is inferior when compared to other farm animal species such as cattle and sheep. Several trials have been reported to increase camel reproduction and production through assisted reproductive techniques (ARTs) such as in vitro fertilization and cloning. For these reasons, obtaining enough mature oocytes is a cornerstone for ARTs. This demand would be improved by the oocyte in vitro maturation (IVM) systems. In this review, the current approaches and views from different laboratories using ARTs and the IVM to produce embryos in vitro in camel species. For the last two decades, conventional IVM system was the common approach, however, recently the bi-phasic IVM system has been introduced and showed promising improvement in IVM of camel oocytes. Detailed studies are needed to understand camel meiosis and IVM to efficiently increase the production of this species.

      • SCISCIESCOPUS

        Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture

        Saadeldin, Islam M.,Koo, Ok Jae,Kang, Jung Taek,Kwon, Dae Kee,Park, Sol Ji,Kim, Su Jin,Moon, Joon Ho,Oh, Hyun Ju,Jang, Goo,Lee, Byeong Chun CSIRO Publishing 2012 Reproduction, fertility, and development Vol.24 No.5

        <P> Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus-oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10-6 M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4 × 10-6 M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine-paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development. </P>

      • KCI등재

        The theranostic roles of extracellular vesicles in pregnancy disorders

        Islam M. Saadeldin,Bereket Molla Tanga,Seonggyu Bang,Xun Fang,Ki-Young Yoon,Sanghoon Lee,Jongki Cho 한국동물생명공학회(구 한국동물번식학회) 2022 Journal of Animal Reproduction and Biotechnology Vol.37 No.1

        Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-theart of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

      • KCI등재

        The theranostic roles of extracellular vesicles in pregnancy disorders

        Islam M. Saadeldin,Bereket Molla Tanga,Seonggyu Bang,Xun Fang,Ki-Young Yoon,Sanghoon Lee,Jongki Cho 한국동물생명공학회(구 한국수정란이식학회) 2022 한국동물생명공학회지 Vol.37 No.1

        Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-theart of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

      • Improvement of Cloned Embryos Development by Co-Culturing with Parthenotes: A Possible Role of Exosomes/Microvesicles for Embryos Paracrine Communication

        Saadeldin, Islam M.,Kim, Su Jin,Choi, Yoo Bin,Lee, Byeong Chun Mary Ann Liebert 2014 Cellular reprogramming Vol.16 No.3

        <P>It is well known that embryos cultured in a group can create a microenvironment through secretion of autocrine and paracrine factors that can support and improve the embryos' development when compared to the embryos cultured individually. In this study, we used a co-culture system for paracrine communication between different kinds of embryos. The results showed that co-culture of porcine parthenogenetic (PA) embryos significantly improved the in vitro development of cloned (nuclear transfer, NT) embryos. To reveal the possible mechanism of communication between the two groups, we isolated exosomes/microvesicles (EXs/MVs) from the PA embryos conditioned medium (PA-CM) through differential centrifugation and identified them through transmission electron microscope and immunoflourescence against exosomal/membrane marker CD9. Furthermore, these EXs/MVs were found to contain mRNA of pluripotency genes (Oct4, Sox2, Klf4, c-Myc, and Nanog), and the PKH67-labeled EXs/MVs could be internalized by the NT embryos. The current study demonstrates that cloned embryos' developmental competence can be improved through co-culturing with PA embryos and revealed, for the first time, that in vitro-produced embryos can secrete EXs/MVs as a possible communication tool within their microenvironment. Moreover, it provides a new paradigm for embryo-to-embryo communication in vitro.</P>

      • KCI등재

        Current approaches for assisted oocyte maturation in camels

        Saadeldin, Islam M.,Cho, Jongki The Korean Society of Animal Reproduction and Biot 2021 한국동물생명공학회지 Vol.36 No.3

        Camel (camelus dromedarius) is a unique large mammalian species that can survive harsh environmental conditions and produce milk, meat, and wool. Camel reproduction is inferior when compared to other farm animal species such as cattle and sheep. Several trials have been reported to increase camel reproduction and production through assisted reproductive techniques (ARTs) such as in vitro fertilization and cloning. For these reasons, obtaining enough mature oocytes is a cornerstone for ARTs. This demand would be improved by the oocyte in vitro maturation (IVM) systems. In this review, the current approaches and views from different laboratories using ARTs and the IVM to produce embryos in vitro in camel species. For the last two decades, conventional IVM system was the common approach, however, recently the bi-phasic IVM system has been introduced and showed promising improvement in IVM of camel oocytes. Detailed studies are needed to understand camel meiosis and IVM to efficiently increase the production of this species.

      • Production of transgenic bovine cloned embryos using piggybac transposition.

        Kim, Su,Saadeldin, Islam M,Choi, Woo Jae,Lee, Song Jeon,Lee, Won Wu,Kim, Bong Han,Han, Hyo Jun,Bang, Du Hee,Lee, Byeong Chun,Jang, Goo The Society ; Maruzen Co. [distributor] 2011 The Journal of veterinary medical science Vol.73 No.11

        <P>Transgenic research on cattle embryos has been developed to date using viral or plasmid DNA delivery systems. In this study, a different gene delivery system, piggybac transposition, was employed to investigate if it can be applied for producing transgenic cattle embryos. Green or red fluorescent proteins (GFP or RFP) were transfected into donor fibroblasts, and then transfected donor cells were reprogrammed in enucleated oocytes through SCNT and developed into pre-implantation stage embryos. GFP was expressed in donor cells and in cloned embryos without any mosaicism. Induction of RFP expression was regulated by doxycycline treatment in donor fibroblasts and pre-implantational stage embryos. In conclusion, this study demonstrated that piggybac transposition could be a mean to deliver genes into bovine somatic cells or embryos for transgenic research.</P>

      • KCI우수등재

        Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo (Bos taurus coreanae) cows

        Jihyun Park,Wonyou Lee,Islam M. Saadeldin,Seonggyu Bang,Sang Hoon Lee,이준구,Jong Ki Cho 한국축산학회 2023 한국축산학회지 Vol.65 No.4

        This study aimed to assess the effects of embryonic developmental stage, quality grade, and fresh or frozen/thawed conditions on the pregnancy rate and sex ratio of live offspring in Hanwoo (Bos taurus coreanae) cows. The quality and developmental stage of in vivo-derived (IVD) transferred embryos were evaluated using the standard criteria of the International Embryo Technology Society. The recipient cows were synchronized using conventional (estradiol benzoate and progesterone) protocols before embryo transfer. Embryos were transferred to 297 cows, and pregnancy was monitored for 60–70 days after embryo transfer. The pregnancy rates of fresh and frozen/thawed embryos were 56.90% and 52.49%, respectively. Pregnancy rates varied according to embryo quality (56.18% for grade 1 vs. 36.67% for grade 2). Pregnancy rates also varied by developmental stage and cryopreservation (67.86% vs. 63.49% for stage 4-1, 64.00% vs. 54.72% for 5-1, and 50.00% vs. 47.83% for 6-1, in fresh embryos vs. frozen/thawed embryos, respectively). For stage 7-1, the pregnancy rates were 72.73% for fresh embryos and 20.00% for frozen/thawed embryos. In 66 fresh embryos, the sex ratio of live offspring was 5:5, whereas it was 4(female):6(male) for frozen/thawed embryos among the 95 frozen/thawed embryos. The miscarriage rate was approximately 3% higher for frozen/thawed embryos than for fresh embryos (18.1% for fresh vs. 21.1% for frozen). Seasonal fertility rates were 33.3% in spring, 55.67% in summer, 52.8% in autumn, 60.0% in winter. The following male-to-female ratios were observed in different seasons: 6.7:3.3 in spring, 4.0:6.0 in summer, 5.5:4.5 in autumn, and 3.3:6.7 in winter. The current data revealed no significant differences in pregnancy rates between fresh and frozen/thawed IVD embryos. However, there was a lower pregnancy rate with advanced-stage frozen/thawed embryos (stage 7-1). The current study provides comprehensive results for the better optimization of embryo transfer in Hanwoo cattle to obtain the desired fertility rate, pregnancy rate, and sex ratio of calves. These results provide important insights into the factors that influence the viability and success of IVD embryo transfer in Hanwoo cows and may have practical applications for improving breeding programs and reducing production costs.

      • KCI등재

        Follicular fluid-derived extracellular vesicles improve in vitro maturation and embryonic development of porcine oocytes

        강희재,Seonggyu Bang,Heyyoung Kim,Ayeong Han,Shuntaro Miura,Hye Sun Park,Islam M. Saadeldin,Sanghoon Lee,Jongki Cho 대한수의학회 2023 大韓獸醫學會誌 Vol.63 No.4

        To optimize the most efficient method for porcine in vitro maturation (IVM), we compared the effects of supplementing extracellular vesicles (EVs) derived from porcine follicular fluid (pFF). The cumulus oocyte complexes were grouped into 4 groups with different supplementations as following: pFF (G1), pFF-depleted EVs (G2), EVs (G3) and control (G4) groups. After IVM with different supplementations, maturation rates and the developmental competences of porcine oocytes and blastocyst development were investigated. Additionally, glutathione (GSH) and reactive oxygen species (ROS) levels were measured in mature oocytes. The EVs were isolated and characterized with cryo-TEM and nanoparticle tracking analysis. The pFF significantly affected the maturation rate, whereas the presence of EVs did not show notable difference in the maturation rates. Although there were numerical increases in the measured parameters in EV and pFF-depleted EVs groups, no significant differences were observed between them. The EV group showed similar oocyte maturation rate for both positive and negative control groups. The GSH was not different among the groups, but ROS levels were significantly lower in pFF-supplemented group when compared with other groups with the highest level in the control group. G2 group wasn’t significantly different G1 and G3 group. G3 group wasn’t significantly different from G2 and G4 group. This suggests that EVs in IVM medium which probably effected partially to protect against oxidative stress and potentially enhance the quality of oocytes. This study indicates that the EVs in pFF play a significant role in improving the efficiency of oocyte maturation in porcine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼