RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Yaw wind effect on flutter instability of four typical bridge decks

        Zhu, Le-Dong,Xu, You-Lin,Guo, Zhenshan,Chang, Guang-Zhao,Tan, Xiao Techno-Press 2013 Wind and Structures, An International Journal (WAS Vol.17 No.3

        When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

      • KCI등재

        Yaw wind effect on flutter instability of four typical bridge decks

        Le-Dong Zhu,You-Lin Xu,Zhenshan Guo,Guang-Zhao Chang,Xiao Tan 한국풍공학회 2013 한국풍공학회지 Vol.17 No.3

        When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat π-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between -3° and 3°, and the yaw wind angles corresponding to the minimal critical wind speeds are between 4° and 15°. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

      • KCI등재

        Topology optimization of unsymmetrical complex plate and shell structures bearing multicondition overload

        Yangyang Zhang,Yixiao Qin,Jinpeng Gu,Qianqian Jiao,Feng Wang,Zhenshan Guo,Hao Zhang,Jianjun Wang,Chenghong Mi,Huaipeng Zheng 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.8

        Unsymmetrical complex plate and shell structure is one of the common engineering structures. In practice, more redundant materials exist because of the irrationality of this kind of structure with heavy load and multiple working conditions, and the study of its topology optimization has become an engaging topic. Using the SIMP model, topological results show that one side of the main web is a hollow structure, and the other side of the auxiliary web is a truss structure. According to the topological results and considering manufacturable processing, a new structure is redesigned, the size and shape of the redesigned structure is secondary optimized, and the final structure is obtained. The method in this paper not only meets the performance requirements of the unsymmetrical complex plate and shell structures, but also realizes the topology and lightweight. The effectiveness scientific research value of the proposed method is verified by engineering examples.

      • KCI등재

        Layout Optimization of Stiffeners in Heavy-Duty Thin-Plate Box Grider

        Hao Zhang,Yixiao Qin,Jinpeng Gu,Haibiao Gao,Qianqian Jiao,Feng Wang,Zhenshan Guo,Yangyang Zhang,Chenghong Mi 대한토목학회 2021 KSCE Journal of Civil Engineering Vol.25 No.8

        The optimization of layout and sizes of the stiffeners in heavy-duty box girder could make this kind of the structure more compact and reasonable, which has certain engineering values. In this study, on the basis of the establishment of parametric finite element model, the function approaching method and gradient search method are combined to form a high-precision optimization algorithm, which makes structural analysis be integrated into the optimization process. The optimization takes the type and location of longitudinal stiffening ribs and the thickness and hole position of transverse diaphragms as design variables, the box girder structural behaviors as constraint conditions, and the total volume as objective function. Finally, the weight is reduced by nearly 7%. More importantly, the new asymmetrical layout of the stiffeners is obtained, the distance between the longitudinal stiffening ribs on the main web and the neutral layer is longer than the distance between the longitudinal stiffening ribs on the secondary web and the neutral layer, and the hole position of transverse diaphragms is close to the secondary web. Compared with the current production of symmetrical layout structure, this layout provides a new idea for the design of stiffeners in the bias-rail box girder.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼