RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Associations between AT-rich Interactive Domain 5B gene Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia: a Meta-analysis

        Zeng, Hui,Wang, Xue-Bin,Cui, Ning-Hua,Nam, Seungyoon,Zeng, Tuo,Long, Xinghua Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.15

        Previous genome-wide association studies (GWAS) have implicated several single nucleotide polymorphisms (SNPs) in the AT-rich interactive domain 5B (ARID5B) gene with childhood acute lymphoblastic leukemia (ALL). However, replicated studies reported some inconsistent results in different populations. Using meta-analysis, we here aimed to clarify the nature of the genetic risks contributed by the two polymorphisms (rs10994982, rs7089424) for developing childhood ALL. Through searches of PubMed, EMBASE, and manually searching relevant references, a total of 14 articles with 16 independent studies were included. Odds ratios (ORs) with 95% confidence intervals (95%CI) were calculated to assess the associations. Both SNPs rs10994982 and rs7089424 showed significant associations with childhood ALL risk in all genetic models after Bonferroni correction. Furthermore, subtype analyses of B-lineage ALL provided strong evidence that SNP rs10994982 is highly associated with the risk of developing B-hyperdiploid ALL. These results indicate that SNPs rs10994982 and rs7089424 are indeed significantly associated with increased risk of childhood ALL.

      • KCI등재

        Regulatory Role of SFN Gene in Hepatocellular Carcinoma and Its Mechanism

        Ying Hui,Hao Zeng,Yi Feng,Wenzhou Qin,Peisheng Chen,Lifang Huang,Wenfu Zhong,Liwen Lin,Hui Lv,Xue Qin 한국생물공학회 2021 Biotechnology and Bioprocess Engineering Vol.26 No.3

        Purpose: This study aims to explore the differential expression of SFN gene and its regulatory role in different hepatocarcinoma cells, and the impact on hepatocarcinoma. Materials and Methods: High and low SFN expression cells were screened by qRT-PCR and western blotting methods. SFN over expression and interference vectors were constructed. Cell viability was detected by CCK8 kit, cell cycle and apoptosis were detected by flow cytometry. Cell invasion and migration were detected. CCNB1 and CDK1 expression levels were detected by qRT-PCR and Western blotting methods. Results: The high SFN expression BEL7402 cells and the low SFN expression Hep3B cells were screened from Hep3B, HepG2, and BEL7402 cells. The activity of Hep3B cells overexpression vector SFNpcDNA3.1(+) decreased and apoptosis increased, the ratio of G0/G1 decreased and the ratio of S phase increased. The activity of BEL7402 cells transfected with SFN siRNA decreased and apoptosis increased, the ratio of G0/G1 decreased and the ratio of G2/M increased. Interference and overexpression vectors have little effect on the invasion and migration of the two cells. The expression of CDK1 in Hep3B cells decreased significantly, the expression of CDK1 and CCNB1 in BEL7402 cells increased significantly. Conclusions: The differentially expressed SFN gene can regulate the growth of the two hepatocarcinoma cells, high expression of SFN gene can inhibit their growth. The mechanism may be achieved by regulating CCNB1 and CDK1 expression.

      • KCI등재

        Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose

        Yao-Chi Zeng,Gui-Ping Mu,Shu-Fen Huang,Xue-Hui Zeng,Hong Cheng,Zhong-Xin Li 한국영양학회 2014 Nutrition Research and Practice Vol.8 No.4

        BACKGROUND/OBJECTIVES: The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs. MATERIALS/METHODS: Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and 50 μg/mL of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK. RESULTS: The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and 50 μg/mL of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury. CONCLUSIONS: Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.

      • KCI등재후보

        — Invited Review — Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation

        Qi Wenlingli,Xue Ming-Yuan,Jia Ming-Hui,Zhang Shuxian,Yan Qiongxian,Sun Hui-Zeng 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.2

        Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.

      • KCI등재

        Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

        Ma Lixia,Qin Ming,Zhang Yulun,Xue Hui,Li Shiyin,Chen Wei,Zeng Yongqing 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.10

        Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development. Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG).Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs.Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events.Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼