RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

        Ma Lixia,Qin Ming,Zhang Yulun,Xue Hui,Li Shiyin,Chen Wei,Zeng Yongqing 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.10

        Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development. Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG).Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs.Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events.Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

      • 2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells

        Yu, Jianwei,Ornelas, Joshua Loroñ,a,Tang, Yumin,Uddin, Mohammad Afsar,Guo, Han,Yu, Simiao,Wang, Yulun,Woo, Han Young,Zhang, Shiming,Xing, Guichuan,Guo, Xugang,Huang, Wei American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.48

        <P>A series of polymer semiconductors incorporating 2,1,3-benzothiadiazole-5,6-dicarboxylicimide (BTZI) as strong electron-withdrawing unit and an alkoxy-functionalized head-to-head linkage containing bithiophene or bithiazole as highly electron-rich co-unit are designed and synthesized. Because of the strong intramolecular charge transfer characteristics, all three polymers BTZI-TRTOR (P1), BTZI-BTOR (P2), and BTZI-BTzOR (P3) exhibit narrow bandgaps of 1.13, 1.05, and 0.92 eV, respectively, resulting in a very broad absorption ranging from 350 to 1400 nm. The highly electron-deficient 2,1,3-benzothiadiazole-5,6-dicarboxylicimide and alkoxy-functionalized bithiophene (or thiazole) lead to polymers with low-lying lowest unoccupied molecular orbitals (-3.96 to -4.28 eV) and high-lying highest occupied molecular orbitals (-5.01 to -5.20 eV). Hence, P1 and P3 show substantial and balanced ambipolar transport with electron mobilities/hole mobilities of up to 0.86/0.51 and 0.95/0.50 cm(2) V-1 s(-1), respectively, and polymer P2 containing the strongest donor unit exhibited unipolar p-type performance with an average hole mobility of 0.40 cm(2) V-1 s(-1) in top-gate/bottom-contact thin-film transistors with gold as the source and drain electrodes. When incorporated into bulk heterojunction polymer solar cells, the narrow bandgap (1.13 eV) polymer P1 shows an encouraging power conversion efficiency of 4.15% with a relatively large open-circuit voltage of 0.69 V, which corresponds to a remarkably small energy loss of 0.44 eV. The power conversion efficiency of P1 is among the highest reported to date with such a small energy loss in polymer:fullerene solar cells.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼