RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Displacement and dual-pressure compound control for fast forging hydraulic system

        Jing Yao,Bin Liu,Xiangdong Kong,Fang Zhou 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.1

        The poor energy efficiency is a big issue in the conventional electro-hydraulic proportional valve controlled fast forging system due tothe huge throttling losses and overflow losses. Aimed to address this problem, a new compound control strategy of displacement anddual-pressure was proposed in this study. Firstly, the mathematic model of the main components was built, and the compound controlstrategy was designed depending on the different working conditions. Then, the overall control system was integrated for both downstrokestage and return-stroke stage. The proposed control strategy was tested and evaluated in a 0.6 MN fast forging press. Results indicatedthat the input energy was reduced by 50% and energy loss decreased dramatically while control performance is good. Results alsoshow that control performance and energy saving is significantly affected by the variation of △p and pb. Overall, the proposed new controlstrategy could be used for the fast forging press with high energy efficiency.

      • KCI등재

        A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds

        Jiang Yao,Tang Shaoqing,Xiao Wei,Yun Peng,Ding Xiangdong 아세아·태평양축산학회 2020 Animal Bioscience Vol.33 No.9

        Objective: Genome-wide association study and two meta-analysis based on GWAS performed to explore the genetic mechanism underlying variation in pig number born alive (NBA) and total number born (TNB). Methods: Single trait GWAS and two meta-analysis (single-trait meta analysis and multi-trait meta analysis) were used in our study for NBA and TNB on 3,121 Yorkshires from 4 populations, including three different American Yorkshire populations (n = 2,247) and one British Yorkshire populations (n = 874). Results: The result of single trait GWAS showed that no significant associated single nucleotide polymorphisms (SNPs) were identified. Using single-trait meta analysis and multi-trait meta analysis within populations, 11 significant loci were identified associated with target traits. Spindlin 1, vascular endothelial growth factor A, forkhead box Q1, msh homeobox 1, and LHFPL tetraspan submily member 3 are five functionally plausible candidate genes for NBA and TNB. Compared to the single population GWAS, single-trait Meta analysis can improve the detection power to identify SNPs by integrating information of multiple populations. The multiple-trait analysis reduced the power to detect trait-specific loci but enhanced the power to identify the common loci across traits. Conclusion: In total, our findings identified novel genes to be validated as candidates for NBA and TNB in pigs. Also, it enabled us to enlarge population size by including multiple populations with different genetic backgrounds and increase the power of GWAS by using meta analysis.

      • KCI등재

        Value of Exhaled Nitric Oxide and FEF25–75 in Identifying Factors Associated With Chronic Cough in Allergic Rhinitis

        Xiaofang Liu,Xiangdong Wang,Xiujuan Yao,Yuhong Wang,Yongchang Sun,Luo Zhang 대한천식알레르기학회 2019 Allergy, Asthma & Immunology Research Vol.11 No.6

        Purpose: Chronic cough in allergic rhinitis (AR) patients is common with multiple etiologies including cough variant asthma (CVA), non-asthmatic eosinophilic bronchitis (NAEB), gastroesophageal reflux-related cough (GERC), and upper airway cough syndrome (UACS). Practical indicators that distinguish these categories are lacking. We aimed to explore the diagnostic value of the fraction of exhaled nitric oxide (FeNO) and forced expiratory flow at 25% and 75% of pulmonary volume (FEF25–75) in specifically identifying CVA and NAEB in these patients. Methods: Consecutive AR patients with chronic cough were screened and underwent induced sputum, FeNO, nasal nitric oxide, spirometry, and methacholine bronchial provocation testing. All patients also completed gastroesophageal reflux disease questionnaires. Results: Among 1,680 AR patients, 324 (19.3%) were identified with chronic cough, of whom 316 (97.5%) underwent etiology analyses. Overall, 87 (27.5%) patients had chronic cough caused by NAEB, 78 (24.7%) by CVA, 16 (5.1%) by GERC, and 81 (25.6%) by UACS. Patients with either NAEB or CVA (n = 165, in total) were further assigned to a common group designated as CVA/NAEB, because they both responded to corticosteroid therapy. Receiver operating characteristic curves of FeNO revealed obvious differences among CVA, NAEB, and CVA/NAEB (area under the curve = 0.855, 0.699, and 0.923, respectively). The cutoff values of FeNO at 43.5 and 32.5 ppb were shown to best differentiate CVA and CVA/NAEB, respectively. FEF25–75 was significantly lower in patients with CVA than in those with other causes. A FEF25–75 value of 74.6% showed good sensitivity and specificity for identifying patients with CVA. Conclusions: NAEB, CVA, and UACS are common causes of chronic cough in patients with AR. FeNO can first be used to discriminate patients with CVA/NAEB, then FEF25–75 (or combined with FeNO) can further discriminate patients with CVA from those with CVA/NAEB.

      • SCISCIESCOPUS

        Biomimetic apatite formed on cobalt-chromium alloy: A polymer-free carrier for drug eluting stent

        Chen, Cen,Yao, Chenxue,Yang, Jingxin,Luo, Dandan,Kong, Xiangdong,Chung, Sung-Min,Lee, In-Seop Elsevier 2017 Colloids and surfaces Biointerfaces Vol.151 No.-

        <P><B>Abstract</B></P> <P>In this study, sirolimus (SRL) was loaded within biomimetic apatite formed on cobalt-chromium (Co-Cr) alloy, which has been reported for the first time, to inhibit the in-stent restenosis. Two different groups of loading SRL within biomimetic apatite were prepared: Group A (mono-layer of apatite/SRL) and Group B (bi-layer of apatite/SRL). Group A and Group B showed the biphasic pattern of SRL release up to 40 and 90days, respectively. The attachment of human artery smooth muscle cell (HASMC) for both Group A and Group B was significantly inhibited, and proliferation dramatically decreased with the release of SRL. Noteworthily, biomimetic apatite alone also suppressed the SMC proliferation. The porous biomimetic apatite uniformly covered Co-Cr stent without crack or webbings. After balloon expansion, the integrity of biomimetic apatite was sufficient to resist delamination or destruction. Thus, this study demonstrated that biomimetic apatite is a promising drug carrier for potential use in stents.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Biomimetic apatite is formed on Co-Cr alloy as a polymer-free drug carrier. </LI> <LI> To inhibit in-stent restenosis, sirolimus is loaded within apatite in two ways. </LI> <LI> Porous and biodegradable biomimetic apatite releases of sirolimus over 40days. </LI> <LI> Integrity of biomimetic apatite is sufficient for clamping and balloon expansion. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Design, Simulation and Experiment for a Vortex-Induced Vibration Energy Harvester for Low-Velocity Water Flow

        Dongxing Cao,Xiangdong Ding,Xiangying Guo,Minghui Yao 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.4

        Piezoelectric vibration energy harvesting has attracted considerable attention because of its prospects in self-powered electronic applications. There are a many low-velocity waters in nature, such as rivers, seas and oceans, which contain abundant hydrokinetic energy. In this paper, an optimal geometric piezoelectric beam combining magnetic excitation is identified and applied to a vortex-induced vibration energy harvester (ViVEH) for low velocity water flow, which is composed of a continuous variable-width piezoelectric beam carrying a cylindrical bluff body. The finite element simulation and experiment are first carried out to study the harvesting characteristics of the designed variable-width beam ViVEH without considering the magnetic excitation. The influence of the width-ratio and flow velocity on the harvesting voltage is studied in detail. The optimal structure, a ViVEH equipped with triangular piezoelectric beam, is then obtained by the superior energy harvesting performance for low velocity water flow. From the experimental results, at a flow velocity of 0.6 m/s, the highest root mean square (RMS) voltage and RMS voltage per unit area are 19.9 V and 0.07 V/mm 2 , respectively. Furthermore, magnetic excitation is introduced to improve the scavenging performance of the optimal triangular beam ViVEH, different polarity arrangements are compared, and the optimal case, the arrangement of horizontal repulsion and vertical attraction (HR-VA), is obtained. This case can scavenge the highest power of 173 μW at a flow velocity of 0.5 m/s, which is increased by 127% compared to a conventional constant-width beam ViVEH with no magnetic excitation.

      • KCI등재

        Improved Flow-Induced Vibration Energy Harvester by Using Magnetic Force: An Experimental Study

        Dongxing Cao,Xiangdong Ding,Xiangying Guo,Minghui Yao 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.8 No.3

        Vibration energy harvesting has attracted considerable attention because of its application prospects for charging or powering micro-electro-mechanical system. Abundant hydrokinetic energy of water at low velocity is contained in the fluid environment, such as rivers and oceans, which are widely existing in nature. In this paper, a flow-induced piezoelectric vibration energy harvester (PVEH) with magnetic force enhancement, which is integrated by piezoelectric beam, circular cylinder bluff body and magnets, is proposed and experimental investigated. It could transfer the hydrokinetic energy, both the vortex-induced vibration and magnetic force excitation underwater, into electricity. First, the frequency sweep experiment of the piezoelectric cantilever beam is carried out to determine the resonance frequency where the effect of magnetic force on the vibration characteristic is obtained. Furthermore, the flow-induced vibration experiment platform is setup and the energy harvesting performance of the PVEH is investigated in detail. The effects of the magnet property, flow velocity and the magnetic poles distance on the vibration frequency and the acquisition voltage are demonstrated and discussed. The results show that it could improve the harvesting performance by introducing magnetic force. It has advantages in higher output voltage for the flow-induced PVEH, especially in low velocity water flow, when the flow velocity is 0.35 m/s, the PVEH under attractive magnetic force with magnetic distance of 20 mm scavenges the higher acquisition voltage of 5.2 V, which is increased by 225% than the PVEH with non-magnetic. The results can be applied to guide further fabrication process and optimized design of the proposed flow-induced PVEH underwater with low flow velocity.

      • KCI등재

        The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method

        Zhao Jiang,Ting Ouyang,Xiangdong Yao,Youqing Fei 한국탄소학회 2016 Carbon Letters Vol.19 No.-

        Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.

      • SCISCIESCOPUS

        Direct catalytic conversion of glucose and cellulose

        Li, Zhenhuan,Su, Kunmei,Ren, Jun,Yang, Dongjiang,Cheng, Bowen,Kim, Chan Kyung,Yao, Xiangdong The Royal Society of Chemistry 2018 GREEN CHEMISTRY Vol.20 No.4

        <P>Biomass product 5-hydroxymethylfurfural (5-HMF) can be used to synthesize a broad range of value added compounds currently derived from petroleum. Thus, the effective conversion of glucose or cellulose (the major components of biomass) into fuels and chemical commodities has been capturing increasing attention. Previous studies have been extensively focused on a two-step process for producing 5-HMF from glucose or cellulose, <I>i.e.</I>, the isomerization of glucose into fructose and then the dehydration of fructose. We herein discovered that heterogeneous sulfonated poly(phenylene sulfide) (SPPS) containing strong Brønsted acid sites is able to convert glucose and cellulose into 5-HMF with a high yield in ionic liquids (ILs). The optimal activity of glucose conversion to 5-HMF achieves a yield of 87.2% after 4 h reaction at 140 °C. For direct cellulose conversion, a 5-HMF yield of 68.2% can be achieved. The reaction mechanism over the SPPS catalyst in ILs was studied by DFT calculations, and the results indicated that the SO3H group of SPPS plays a crucial role in glucose conversion into 5-HMF, and it acts as a proton donor as a Brønsted acid and functions as a proton acceptor as the conjugate base. Furthermore, the anions and cations of ILs together with SO3H-SPPS helped in stabilizing the reaction intermediates and transition states, which also resulted in glucose facile conversion into 5-HMF. The new catalyst system highlights new opportunities offered by optimizing the production of 5-HMF directly from glucose and cellulose.</P>

      • KCI등재

        Dual Attention Based Image Pyramid Network for Object Detection

        ( Xiang Dong ),( Feng Li ),( Huihui Bai ),( Yao Zhao ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.12

        Compared with two-stage object detection algorithms, one-stage algorithms provide a better trade-off between real-time performance and accuracy. However, these methods treat the intermediate features equally, which lacks the flexibility to emphasize meaningful information for classification and location. Besides, they ignore the interaction of contextual information from different scales, which is important for medium and small objects detection. To tackle these problems, we propose an image pyramid network based on dual attention mechanism (DAIPNet), which builds an image pyramid to enrich the spatial information while emphasizing multi-scale informative features based on dual attention mechanisms for one-stage object detection. Our framework utilizes a pre-trained backbone as standard detection network, where the designed image pyramid network (IPN) is used as auxiliary network to provide complementary information. Here, the dual attention mechanism is composed of the adaptive feature fusion module (AFFM) and the progressive attention fusion module (PAFM). AFFM is designed to automatically pay attention to the feature maps with different importance from the backbone and auxiliary network, while PAFM is utilized to adaptively learn the channel attentive information in the context transfer process. Furthermore, in the IPN, we build an image pyramid to extract scale-wise features from downsampled images of different scales, where the features are further fused at different states to enrich scale-wise information and learn more comprehensive feature representations. Experimental results are shown on MS COCO dataset. Our proposed detector with a 300×300 input achieves superior performance of 32.6% mAP on the MS COCO test-dev compared with state-of-the-art methods.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼