RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Radiation-induced Cochlea Hair Cell Death: Mechanisms and Protection

        Tan, Pei-Xin,Du, Sha-Sha,Ren, Chen,Yao, Qi-Wei,Yuan, Ya-Wei Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.10

        Cochlea hair cell death is regarded to be responsible for the radiation-induced sensorineural hearing loss (SNHL), which is one of the principal complications of radiotherapy (RT) for head and neck cancers. In this mini-review, we focus on the current progresses trying to unravel mechanisms of radiation-induced hair cell death and find out possible protection. P53, reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) pathways have been proposed as pivotal in the processes leading to radiation hair cell death. Potential protectants, such as amifostine, N-acetylcysteine (NAC) and epicatechin (EC), are claimed to be effective at reducing radiation-inducedhair cell death. The RT dosage, selection and application of concurrent chemotherapy should be pre-examined in order to minimize the damage to cochlea hair cells.

      • KCI등재

        The anti-obesity effect of lotus leaves on high-fat-diet-induced obesity by modulating lipid metabolism in C57BL/6J mice

        Wu Ya,Tan Fang,Zhang Tianyu,Xie Binglin,Ran Lixian,Zhao Xin 한국응용생명화학회 2020 Applied Biological Chemistry (Appl Biol Chem) Vol.63 No.5

        Lotus leaves (Nelumbo nucifera) are widely used in medicines and foods. The investigate systematically studied the anti-obesity effect of lotus leaf extracts. It could reduce body weight, alleviate liver damage, and inhibit fat accumulation in high-fat-diet-induced obese mice. Lotus leaf extracts reduced serum alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (AKP) levels; decreased total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels in the serum; and increased high-density lipoprotein cholesterol (HDL-C) levels to improve dyslipidemia. Lotus leaves also inhibited inflammation accompanied by obesity via decreasing inflammatory cytokine interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and IL-6 levels and increasing anti-inflammatory cytokine IL-4 and IL-10 levels. qPCR analysis revealed that lotus leaves upregulated peroxisome proliferator-activated receptor alpha (PPAR-α), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT1), and cholesterol 7 alpha hydroxylase (CYP7A1) mRNA expressions and downregulated peroxisome proliferator- activated receptor gamma (PPAR-γ) and CCAAT/enhancer-binding protein alpha (C/EBP-α) mRNA expressions, to reduce adipocyte differentiation and fat accumulation, promote oxidation of fat and decomposition of triglyceride and cholesterol. So, lotus leaves effectively regulated lipid metabolism, alleviated inflammation and liver injury in obese mice; thus, lotus leaves could be further developed as a food to combat obesity.

      • KCI등재

        Single-cell RNA sequencing reveals B cell–related molecular biomarkers for Alzheimer’s disease

        Xiong Liu-Lin,Xue Lu-Lu,Du Ruo-Lan,Niu Rui-Ze,Chen Li,Chen Jie,Hu Qiao,Tan Ya-Xin,Shang Hui-Fang,Liu Jia,Yu Chang-Yin,Wang Ting-Hua 생화학분자생물학회 2021 Experimental and molecular medicine Vol.53 No.-

        In recent years, biomarkers have been integrated into the diagnostic process and have become increasingly indispensable for obtaining knowledge of the neurodegenerative processes in Alzheimer’s disease (AD). Peripheral blood mononuclear cells (PBMCs) in human blood have been reported to participate in a variety of neurodegenerative activities. Here, a single-cell RNA sequencing analysis of PBMCs from 4 AD patients (2 in the early stage, 2 in the late stage) and 2 normal controls was performed to explore the differential cell subpopulations in PBMCs of AD patients. A significant decrease in B cells was detected in the blood of AD patients. Furthermore, we further examined PBMCs from 43 AD patients and 41 normal subjects by fluorescence activated cell sorting (FACS), and combined with correlation analysis, we found that the reduction in B cells was closely correlated with the patients’ Clinical Dementia Rating (CDR) scores. To confirm the role of B cells in AD progression, functional experiments were performed in early-stage AD mice in which fibrous plaques were beginning to appear; the results demonstrated that B cell depletion in the early stage of AD markedly accelerated and aggravated cognitive dysfunction and augmented the Aβ burden in AD mice. Importantly, the experiments revealed 18 genes that were specifically upregulated and 7 genes that were specifically downregulated in B cells as the disease progressed, and several of these genes exhibited close correlation with AD. These findings identified possible B cell-based AD severity, which are anticipated to be conducive to the clinical identification of AD progression.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼