RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

        Bennai, Riadh,Fourn, Hocine,Nebab, Mokhtar,Atmane, Redhwane Ait,Mellal, Fatma,Atmane, Hassen Ait,Benadouda, Mourad,Touns, Abdelouahed Techno-Press 2022 Advances in concrete construction Vol.14 No.3

        In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

      • KCI등재

        Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

        Riadh Bennai,Hocine Fourn,Hassen Ait Atmane,Abdelouahed Tounsi,Aicha Bessaim 한국풍공학회 2019 Wind and Structures, An International Journal (WAS Vol.28 No.1

        In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates’ defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as (porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

      • Study on stability and free vibration behavior of porous FGM beams

        Riadh Bennai,Redhwane Ait Atmane,Fabrice Bernard,Mokhtar Nebab,Noureddine Mahmoudi,Hassen Ait Atmane,Salem Mohammed Aldosari,Abdelouahed Tounsi 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.45 No.1

        In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

      • KCI등재

        A new higher-order shear and normal deformation theory for functionally graded sandwich beams

        Riadh Bennai,Abdelouahed Tounsi,Hassen Ait Atmane 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.19 No.3

        A new refined hyperbolic shear and normal deformation beam theory is developed to study the free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions. The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of functionally graded sandwich beams.

      • KCI등재

        Wave dispersion properties in imperfect sigmoid plates using various HSDTs

        Belaid Batou,Mokhtar Nebab,Riadh Bennai,Hassen Ait Atmane,Abdeldjebbar Tounsi,Mohammed Bouremana 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.33 No.5

        In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

      • Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

        Redhwane Ait Atmane,Noureddine Mahmoudi,Riadh Bennai,Hassen Ait Atmane,Abdelouahed Tounsi 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.39 No.1

        In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

      • KCI등재

        Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

        Mokhtar Nebab,Hassen Ait Atmane,Riadh Bennai,Abdelouahed Tounsi,E.A. Adda Bedia 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.69 No.5

        This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

      • SCIESCOPUS

        Free vibration of FGM plates with porosity by a shear deformation theory with four variables

        Yousfi, Mahfoud,Atmane, Hassen Ait,Meradjah, Mustapha,Tounsi, Abdelouahed,Bennai, Riadh Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.3

        In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but also simple for the presentation of the response of free vibration and the effect of porosity on the latter.

      • KCI등재

        Free vibration of FGM plates with porosity by a shear deformation theory with four variables

        Mahfoud Yousfi,Hassen Ait Atmane,Mustapha Meradjah,Abdelouahed Tounsi,Riadh Bennai 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.3

        In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but also simple for the presentation of the response of free vibration and the effect of porosity on the latter.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼