RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • KCI등재

        Pre-Seeding of Simple Electrospun Scaffolds with a Combination of Endothelial Cells and Fibroblasts Strongly Promotes Angiogenesis

        Dikici Serkan,Claeyssens Frederik,MacNeil Sheila 한국조직공학과 재생의학회 2020 조직공학과 재생의학 Vol.17 No.4

        Background: Introduction of pro-angiogenic cells into tissue-engineered (TE) constructs (prevascularisation) is a promising approach to overcome delayed neovascularisation of such constructs post-implantation. Accordingly, in this study, we examined the contribution of human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts (HDFs) alone and in combination on the formation of new blood vessels in ex-ovo chick chorioallantoic membrane (CAM) assay. Methods: Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polycaprolactone (PCL) were first examined in terms of their physical, mechanical, and biological performances. The effect of gelatin coating and co-culture conditions on enhancing endothelial cell viability and growth was then investigated. Finally, the angiogenic potential of HDMECs and HDFs were assessed macroscopically and histologically after seeding on simple electrospun PHBV scaffolds either in isolation or in indirect co-culture using an ex-ovo CAM assay. Results: The results demonstrated that PHBV was slightly more favourable than PCL for HDMECs in terms of cell metabolic activity. The gelatin coating of PHBV scaffolds and co-culture of HDMECs with HDFs both showed a positive impact on HDMECs viability and growth. Both cell types induced angiogenesis over 7 days in the CAM assay either in isolation or in co-culture. The introduction of HDMECs to the scaffolds resulted in the production of more blood vessels in the area of implantation than the introduction of HDFs, but the co-culture of HDMECs and HDFs gave the most significant angiogenic activity. Conclusion: Our findings showed that the in vitro prevascularisation of TE constructs with HDMECs and HDFs alone or in co-culture promotes angiogenesis in implantable TE constructs.

      • Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health

        Leulier, Franç,ois,MacNeil, Lesley T.,Lee, Won-jae,Rawls, John F.,Cani, Patrice D.,Schwarzer, Martin,Zhao, Liping,Simpson, Stephen J. Elsevier 2017 Cell metabolism Vol.25 No.3

        <P>Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations.</P>

      • KCI등재

        Black and Green Tea as Well as Specialty Teas Increase Osteoblast Mineralization with Varying Effectiveness

        Michael D. McAlpine,William Gittings,Adam J. MacNeil,Wendy E. Ward 한국식품영양과학회 2021 Journal of medicinal food Vol.24 No.8

        Many human studies suggest a benefit of tea consumption on bone health. The study objective was to compare the ability of different tea types to promote mineralization. Saos-2 cells underwent mineralization (5 days) in the presence of tea (white: WT, green: GT, black: BT, green rooibos: GR, or red rooibos: RR; 1 μg/mL of polyphenols) or control. Total polyphenol content (TPC, Folin-Ciocalteu's reagent), antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl [DPPH] scavenging), mineralization (Alizarin Red staining), gene expression quantitative reverse transcription PCR (RT-qPCR), and cell activity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) were determined. TPC was highest in GT and BT. The ability of each tea to inhibit DPPH also differed (WT, GT > RR) after normalizing for polyphenol quantity. Each tea increased mineralization and differences were observed among types (GT/BT/GR/RR > WT, GT = BT = GR, RR > BT/GT). mRNA expression of alkaline phosphatase (ALP) and ectonucleotide pyrophosphatase/phosphodiesterase (NPP1) remained unchanged, whereas osteopontin (OPN) and sclerostin (SOST) were reduced in cells treated with tea, regardless of type. At 24- and 48-h postexposure to tea, cell activity was greater in cells receiving any of the teas compared with vehicle control. Supplementation increased mineralization regardless of tea type with both rooibos teas and black tea stimulating greater mineralization than WT, whereas green tea is similar to the others. While future study is needed to confirm in vivo effects, the results suggest that consuming any of the teas studied may benefit bone health.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼