RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Vanadium on the Microstructure and Mechanical Properties of 2100 MPa Ultra-High Strength High Plasticity Spring Steel Processed by a Novel Online Rapid-Induction Heat Treatment

        Qi‑Lei Dai,Kun Li,Kai‑Ren Meng,Zhou Fang,Wen Chen,Tian‑Bao Yang,Chi Feng,Jin‑Ming Wu,R. D. K. Misra 대한금속·재료학회 2023 METALS AND MATERIALS International Vol.29 No.4

        Advanced automotive industries generate large demand for the next generation of high strength and high toughness springsteels. Vanadium-containing 55SiCrV spring steels subjected to rapid-induction heating treatment can fulfil such requirements. However, the effect of vanadium microalloying under online rapid-induction heat treatments is rarely reported. Acomparative study of the microstructure and tensile properties of 55SiCr and 55SiCrV spring steel wires subjected to a novelonline rapid induction heat treatment has been demonstrated herein. It is found that the tensile strength of the 55SiCr springwire decreases with the decrease in the wire speed in online rapid-induction heating, and the plasticity increases. Whereas,the tensile strength of the 55SiCrV steel wire increases with the decrease in the wire speed with the retained high plasticity,which is attributed to the strengthening effect of the dislocations. Through the optimized rapid-induction heating/coolingthermal cycles and intermediate-temperature tempering treatment, the tensile strength of the 55SiCrV steel wire approaches2106 MPa with total elongation of 9.7%. Compared with the 55SiCr spring steel, the addition of V in 55SiCrV spring steelchanges the strengthening and toughening mechanisms via the grain refinement and enhancement in the hardenability andtempering resistance. The finely dispersed V-containing secondary phases are rarely found in the matrix, which indicates thatthe precipitation effect stemming from the addition of V is not the dominant strengthening factor in the online rapid-inductionheat process. The proposed novel online rapid-induction heat treatment provides a promising pathway for the mechanicalproperty improvement of the spring steel.

      • SCOPUSKCI등재

        Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2

        Zhu, Hong-Lin,Wei, Xing,Qu, Shun-Lin,Zhang, Chi,Zuo, Xiao-Xia,Feng, Yan-Sheng,Luo, Qi,Chen, Guang-Wen,Liu, Mei-Dong,Jiang, Lei,Xiao, Xian-Zhong,Wang, Kang-Kai Korean Society for Biochemistry and Molecular Bion 2011 Experimental and molecular medicine Vol.43 No.8

        Cardiomyocytes can resist ischemia/reperfusion(I/R) injury through ischemic postconditioning (IPoC) which is repetitive ischemia induced during the onset of reperfusion. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a member of the WD-40 family proteins, we previously showed that MIP2 was up-regulated during ischemic preconditioning (IPC). As IPC and IPoC engaged similar molecular mechanisms in cardioprotection, this study aimed to elucidate whether MIP2 was up-regulated during IPoC and contributed to IPoC-mediated protection against I/R injury. The experiment was conducted on two models, an $in$ $vivo$ open chest rat coronary artery occlusion model and an $in$ $vitro$ model with H9c2 myogenic cells. In both models, 3 groups were constituted and randomly designated as the sham, I/R and IPoC/hypoxia postconditioning (HPoC) groups. In the IPoC group, after 45 min of ischemia, hearts were allowed three cycles of reperfusion/ischemia phases (each of 30 s duration) followed by reperfusion. In the HPoC group, after 6 h of hypoxia, H9c2 cells were subjected to three cycles of 10 minute reoxygenation and 10 minute hypoxia followed by reoxygenation. IPoC significantly reduced the infarct size, plasma level of Lactate dehydrogenase and creatine kinase MB in rats. 12 h after the reperfusion, MIP2 mRNA levels in the IPoC group were 10 folds that of the sham group and 1.4 folds that of the I/R group. Increased expression of MIP2 mRNA and attenuation of apoptosis were similarly observed in the HPoC group in the $in$ $vitro$ model. These effects were blunted by transfection with MIP2 siRNA in the H9c2 cells. This study demonstrated that IPoC induced protection was associated with increased expression of MIP2. Both MIP2 overexpression and MIP2 suppression can influence the IPoC induced protection.

      • KCI등재

        Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2

        Hong-Lin Zhu,Kang-Kai Wang,Xing Wei,Shun-Lin Qu,Chi Zhang,Xiao-Xia Zuo,Yan-Sheng Feng,Qi Luo,Guang-Wen Chen,Mei-Dong Liu,Lei Jiang,Xian-Zhong Xiao 생화학분자생물학회 2011 Experimental and molecular medicine Vol.43 No.8

        Cardiomyocytes can resist ischemia/reperfusion (I/R)injury through ischemic postconditioning (IPoC)which is repetitive ischemia induced during the onset of reperfusion. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a member of the WD-40family proteins, we previously showed that MIP2 was up-regulated during ischemic preconditioning (IPC). As IPC and IPoC engaged similar molecular mechanisms in cardioprotection, this study aimed to elucidate whether MIP2 was up-regulated during IPoC and contributed to IPoC-mediated protection against I/R injury. The experiment was conducted on two models,an in vivo open chest rat coronary artery occlusion model and an in vitro model with H9c2 myogenic cells. In both models, 3 groups were constituted and randomly designated as the sham, I/R and IPoC/hypoxia postconditioning (HPoC) groups. In the IPoC group, after 45 min of ischemia, hearts were allowed three cycles of reperfusion/ischemia phases (each of 30 s duration)followed by reperfusion. In the HPoC group, after 6 h of hypoxia, H9c2 cells were subjected to three cycles of 10 minute reoxygenation and 10 minute hypoxia followed by reoxygenation. IPoC significantly reduced the infarct size, plasma level of Lactate dehydrogenase and creatine kinase MB in rats. 12 h after the reperfusion,MIP2 mRNA levels in the IPoC group were 10 folds that of the sham group and 1.4 folds that of the I/R group. Increased expression of MIP2 mRNA and attenuation of apoptosis were similarly observed in the HPoC group in the in vitro model. These effects were blunted by transfection with MIP2 siRNA in the H9c2cells. This study demonstrated that IPoC induced protection was associated with increased expression of MIP2. Both MIP2 overexpression and MIP2 suppression can influence the IPoC induced protection.

      • KCI등재

        Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells

        Ching-Ying Wang,Chen-Sheng Lin,Chun-Hung Hua,Yu-Jen Jou,Chi-Ren Liao,Yuan-Shiun Chang,Lei Wan,Su-Hua Huang,Mann-Jen Hour,Cheng-Wen Lin 한국응용약물학회 2019 Biomolecules & Therapeutics(구 응용약물학회지) Vol.27 No.1

        Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was 24.0 μM and 17.8 μM for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentrationdependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼