RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model

        Meng Fanqi,Yang Shuaisong,Wang Jingdong,Xia Lei,Liu Han 대한전기학회 2022 Journal of Electrical Engineering & Technology Vol.17 No.4

        Creating a large-scale knowledge graph of electric power equipment faults will facilitate the development of automatic fault diagnosis and intelligent question answering (QA) in the electric power industry. However, most existing methods have lower accuracy in Chinese entity recognition, thus it is hard to build such a high-quality knowledge graph by extracting knowledge from Chinese technical literature. To solve the problem, a novel model called BERT–BiLSTM–CRF is proposed. It blends Bi-directional Encoder Representation from Transformers (BERT), Bi-directional Long Short-Term Memory (BiLSTM), and Conditional Random Field (CRF). The model fi rstly identifi es and extracts electric power equipment entities from preprocessed Chinese technical literature. Then, the semantic relations between the entities are extracted based on the relation classifi cation method based on dependency parsing. Finally, the extracted knowledge is stored in the Neo4j database in the form of the triplet and visualized in the form of a graph. Through the above steps, a Chinese knowledge graph of electric power equipment faults can be built. The novelty of the model just lies in its subtle blend: the BERT module can not only learn phrase-level information representation, but also learn rich semantic information features; the CRF module realizes the constraint on the label prediction value and reduces the irregular recognition rate, so the accuracy rate of entity recognition is improved. Taking the Chinese technological literature, which is about fault diagnosis of electric power equipment as the experimental object, the experimental results show that the model identifi es and extracts Chinese entities more accurately than traditional methods. Thus, a comprehensive and accurate Chinese knowledge graph of electric power equipment faults could be constructed more easily.

      • KCI등재

        Strength and Mechanism of Carbonated Solidified Clay with Steel Slag Curing Agent

        Man Li,Qiang Wang,Jingdong Yang,Xiaoliang Guo,Wenjun Zhou 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.3

        Industrial wastes, such as steel slag and desulfurized gypsum, are piled up in large quantities and only a very small portion is recycled, adversely impacting natural ecosystems. Meanwhile, environmental problems caused by CO2 have increasingly received attention. Hence, this study introduces a novel environmentally friendly composite, formed by sodium hydroxide (used as an activator), desulfurized gypsum and steel slag (S-GS). The main objective of this study is to evaluate the potential use of S-GS for solidifying clay under the condition of carbonation curing. Besides, the samples’ characteristics are investigated according to the tests of unconfined compressive strength (UCS), pH, carbonation depth, quality loss and scanning electron microscope (SEM). It is found that the UCS of solidified clay decreases with the increasing water content while it increases first and then decreases with the increasing desulfurized gypsum content, reaching the maximum when the water content is 0.5 times the liquid limit and the content of desulfurized gypsum is 8%. Moreover, compared with the standard curing, carbonation curing can stimulate the activity of S-GS to improve the UCS of samples more effectively. With the increasing carbonation curing time, the mass loss rate and carbonation depth of samples increase while the pH value decreases. Additionally, based on the normalized analysis, the carbonation time has the most significant effect on the UCS. Furthermore, the SEM results indicate that formation of Calcium carbonate and Magnesium carbonate are primary reasons for improving the UCS of the stabilised clay during carbonization. This research promotes steel slag and desulfurized gypsum as green stabilisers for soil stabilization, and the method of carbonation curing contributes to the higher UCS, which also greatly shortens the curing time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼