RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

        ( Jeong Hyub Ha ),( Suk Soon Choi ) 한국공업화학회 2021 공업화학 Vol.32 No.5

        In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (λ) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, λ, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

      • KCI등재

        Effects of the ratio of carbon to nitrogen concentration on lipid production by bacterial consortium of sewage sludge using food wastewater as a carbon source

        Jeong Hyub Ha,JONG MOON PARK,Sang Do Yook,Raul Sanchez Sanchez 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.6

        Food wastewater (FWW) and sewage sludge (SS) were used to control the C :N ratio in cultures as a method to increase lipid production by microbial species in SS. FWW and SS were mixed in volumetric ratios (FWW: SS) of 5 : 0 (F5), 4 : 1 (F4), or 3 : 2 (F3). Compared to raw SS, total lipid content production was increased by 263% in F5, 142% in F4, and 111% in F3. These results were caused by increases in the concentrations of triglycerides (TAGs) during lipid enhancement. The fatty acid methyl ester content of TAGs (wt% of extract) was 25.3 in F5, 20.2 in F4 and 13.25 in F3; these were significant improvements over biodiesel production using raw SS. C16:0 fatty acid was mostly converted to C18:1 fatty acid; this is an important result because the proportion of C18:1 strongly influences the quality of biodiesel. This is the first effort to produce biodiesel using FWW instead of synthetic medium as a carbon source. Hence, this study provides a useful solution for treating organic wastes (SS and FWW) simultaneously; this strategy may be an economically viable method for producing biodiesel from organic wastes.

      • KCI등재

        Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

        Jeong Hyub Ha,Say Kee Ong,R. Surampalli 대한환경공학회 2010 Environmental Engineering Research Vol.15 No.2

        Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a wastewater temperature at 13°C. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg NH(3)-N/m(3)-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

      • KCI등재

        혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리

        하정협 ( Jeong Hyub Ha ),박종문 ( Jong Moon Park ) 한국공업화학회 2017 공업화학 Vol.28 No.5

        본 연구에서는 하수 슬러지 및 음폐수의 효율적인 병합처리를 위해 고온호기 전처리의 적용가능성을 알아보고자 고온호기-중온혐기 연계공정의 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 또한, 유기물 부하량 증가에 따른 공정 내 변화 양상을 관찰하기 위해 실험실 규모의 고온호기-중온혐기 소화장치를 제작하여 음폐수를 증류수로 희석하는 비율을 1/3 (Run I), 2/3 (Run II) 및 원액(Run III)으로 줄여가며 혐기소화 공정 내 변화 양상을 관찰하였다. 실험 결과 별도의 pH 조절 없이 고온호기-중온혐기 연계공정 소화조 내에서 pH가 7~8으로 안정하게 유지됨을 알 수 있었다. Volatile solid (VS)는 순응 기간 후 고온호기-중온혐기 연계공정에서 52.24% (Run I), 66.59% (Run II)및 72.53% (Run III)의 제거효율을 보이며, 중온혐기 소화조(R3)에 비교하여 높은 VS 제거율을 보였다. 또한, 고온호기-중온혐기(R1-R2) 연계공정에서 약 1.6배 향상된 메탄 생성률이 관찰되었으며, 메탄수율의 경우에도 고온호기-중온혐기(R1-R2) 연계공정에서 현저하게 높은 값을 유지하였다. In this study, in order to find the feasibility of thermophilic biological pre-treatment for the co-digestion of food wastewater and sewage sludge, digestion efficiency of the combined thermophilic aerobic and mesophilic anaerobic process and its effect on methane production were investigated. Also, a lab-scale co-digestion process was operated to observe parameter changes according to the increase of organic loading rates using different dilution ratios of distilled water and food wastewater (1/3 [Run I], 2/3 [Run II] in addition to using the raw food wastewater [Run III]). The results indicated that co-digestion process maintained quite stable and constant pH during entire experiments. With regard to VS removal, the higher removal was observed in the combined process and the removal efficiency was 52.24% (Run I), 66.59% (Run II) and 72.53 (Run III), respectively. In addition, the combined process showed about an 1.6-fold improved methane production rate and significantly higher methane yield than that of using single anaerobic digestion process.

      • KCI등재

        혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리

        하정협 ( Jeong Hyub Ha ),최석순 ( Suk Soon Choi ),박종문 ( Jong Moon Park ) 한국공업화학회 2018 공업화학 Vol.29 No.5

        본 연구에서는 유입 슬러지에 다양한 전처리 방법과 고액분리장치를 이용한 유출수의 잉여슬러지를 농축 후 내부반송을 적용하여, 중온혐기-고온호기 혼합 슬러지 처리 공정의 슬러지 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 실험실 규모의 혼합 소화공정장치를 제작하여 서로 다른 유입 슬러지 전처리방법을 적용하여 5단계로 실험을 진행하였다. 1단계에서는 열-알칼리처리 전처리를 하여 슬러지를 공급하였고, 2, 3, 4단계에서는 유출수로부터 농축된 잉여슬러지의 내부반송과 각각 열-알칼리처리, 열처리, 알칼리 처리(7일)를 거친 유입 슬러지를 공급하였다. 마지막 5단계에서는 전처리를 하지 않은 슬러지를 공급하였다. 실험 결과, 1단계에서 4단계까지 진행되는 동안 Volatile Suspended Solid (VSS) 제거율은 유입 슬러지 전처리와 내부반송을 적용하는 경우 크게 증가하였으며, 메탄 생성량 또한 2단계에서 슬러지 내부반송과 열-알칼리처리 전처리 적용의 경우 285 mL/L/day까지 크게 증가하였다. 한편, 5단계에서 전처리를 하지 않은 슬러지를 공급하였을 경우 VSS 제거율과 메탄 생성량이 크게 감소하였다. 결론적으로, 유입 슬러지의 열-알칼리처리 전처리와 유출수의 농축 잉여슬러지의 내부반송을 통해 복합 슬러지 처리 공정의 슬러지 제거 효율과 메탄생성량을 크게 증가시킬 수 있었다. In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

      • KCI등재
      • KCI등재

        Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

        ( Phani B. S. Rallapalli ),( Jeong Hyub Ha ) 한국공업화학회 2020 공업화학 Vol.31 No.5

        In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N<sub>2</sub> sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 m<sup>2</sup>/g and 0.52 cm3/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 m<sup>2</sup>/g and 0.39 cm<sup>3</sup>/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼