RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effects of spin-casting speed on solar cell performances and corresponding films morphology and optical properties using 2D perovskite of PEA2MA2Pb3I10

        Yang Zhang,Zeyang Wang,Ting Liu,Bo Yang,Shu Hu,Heng Li,ChuanXiang Sheng 대한금속·재료학회 2022 ELECTRONIC MATERIALS LETTERS Vol.18 No.3

        On hot substrates with a temperature of 100 °C, the qualities of two-dimensional perovskite PEA2MA2Pb3I10(PEA = phenethylammonium,MA = methylammonium) films have been explored which are constructed with different spin-casting speeds. These films are performed at the speed of 1000, 2000, 4000, and 6000 revolution per minute (RPM). Below 4000 r, a higherRPM results in higher crystalline quality with more uniform morphology. Correspondingly, 4000 r devices show better performanceon average (4.3% power conversion efficiency) and less hysteresis in the J-V curve than 1000 r (3.6%) and 2000 rdevices (3.4%). However, for devices that were fabricated at 6000 r, inferior performance (2.8% on average) may not bepredicted simply by the morphology characterization or optical measurement results at room temperature; instead, carriertrapping states can occur that result in thermally activated PL below 200 K with an activation energy of 18 meV, which donot occur in the 1000 r, 2000 r, and 4000 r films. Our results suggest that for evaluating 2D perovskite films prior to fabricatingoptimal devices, multiple morphology characterizations and optical measurements, including of low-temperature PL,will be helpful.

      • SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin–Rho GTPase–Hippo Pathways

        Zhang, Yan-Li,Li, Qing,Yang, Xiao-Mei,Fang, Fang,Li, Jun,Wang, Ya-Hui,Yang, Qin,Zhu, Lei,Nie, Hui-Zhen,Zhang, Xue-Li,Feng, Ming-Xuan,Jiang, Shu-Heng,Tian, Guang-Ang,Hu, Li-Peng,Lee, Ho-Young,Lee, Su-J American Association for Cancer Research 2018 Cancer research Vol.78 No.9

        <P>Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P>Tumor-associated macrophages (TAM) represent key regulators of the complex interplay between cancer and the immune microenvironment. Matricellular protein SPON2 is essential for recruiting lymphocytes and initiating immune responses. Recent studies have shown that SPON2 has complicated roles in cell migration and tumor progression. Here we report that, in the tumor microenvironment of hepatocellular carcinoma (HCC), SPON2 not only promotes infiltration of M1-like macrophages but also inhibits tumor metastasis. SPON2-α4β1 integrin signaling activated RhoA and Rac1, increased F-actin reorganization, and promoted M1-like macrophage recruitment. F-Actin accumulation also activated the Hippo pathway by suppressing LATS1 phosphorylation, promoting YAP nuclear translocation, and initiating downstream gene expression. However, SPON2-α5β1 integrin signaling inactivated RhoA and prevented F-actin assembly, thereby inhibiting HCC cell migration; the Hippo pathway was not noticeably involved in SPON2-mediated HCC cell migration. In HCC patients, SPON2 levels correlated positively with prognosis. Overall, our findings provide evidence that SPON2 is a critical factor in mediating the immune response against tumor cell growth and migration in HCC.</P><P><B>Significance:</B> Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P><B>Graphical Abstract:</B> http://cancerres.aacrjournals.org/content/canres/78/9/2305/F1.large.jpg. <I>Cancer Res; 78(9); 2305–17. ©2018 AACR</I>.</P><P><B>Graphical Abstract</B></P><P> [Figure]</P>

      • Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice

        Jiang, Shu-Heng,Li, Jun,Dong, Fang-Yuan,Yang, Jian-Yu,Liu, De-Jun,Yang, Xiao-Mei,Wang, Ya-Hui,Yang, Min-Wei,Fu, Xue-Liang,Zhang, Xiao-Xin,Li, Qing,Pang, Xiu-Feng,Huo, Yan-Miao,Li, Jiao,Zhang, Jun-Feng Elsevier 2017 Gastroenterology Vol.153 No.1

        <P><B>Background & Aims</B></P> <P>Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors.</P> <P><B>Methods</B></P> <P>We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras<SUP>G12D/+</SUP>/Trp53<SUP>R172H/+</SUP>/Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses.</P> <P><B>Results</B></P> <P>In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B–LYN–p85 complex, which increased PI3K–Akt–mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice.</P> <P><B>Conclusions</B></P> <P>Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice.</P>

      • KCI등재

        GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis

        Heng Lin,Peng Hu,Hongyu Zhang,Yong Deng,Zhiqing Yang,Leida Zhang 한국분자세포생물학회 2022 Molecules and cells Vol.45 No.5

        The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.

      • KCI등재

        Experimental study on CO2 bubble dynamics under different solution viscosity and absorbent concentration

        Yang Jia-xi,Gao Dan,Qi You-wei,Zhang Heng 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.8

        Carbon dioxide (CO2) emitted by fossil energy combustion is related to the greenhouse effect. To furtherstudy the motion dynamics of CO2 bubbles in various solutions so as to better absorb them, a CO2 bubble experimentalplatform was built. The growth and motion of a single CO2 bubble were experimented in five concentrations ofNaOH, NaHCO3 solutions and five viscosity deionized waters, photographed with a high-speed camera and importedinto PyCharm for analysis. Based on this, four kinds of CO2 bubbles were experimentally studied. The results show thatthe viscosity leads to the increase of rising time; the maximum rise time is 0.518 s when the viscosity is 100 mPa·s, theaspect ratio  of CO2 bubble in solution, there will be an “L” distribution, and the minimum rise time is close to risingafter the bubble is separated from the injector. NaHCO3 inhibits the reaction between NaOH solution and CO2, resultingin the cross-section ratio  change decreasing. The concentration of NaOH solution most conducive to CO2absorption is 0.039 g/ml and 0.058 g/ml.

      • Photoluminescent properties of Ce<sup>3+</sup> in compounds Ba<sub>2</sub>Ln(BO<sub>3</sub>)<sub>2</sub>Cl (Ln = Gd and Y)

        Jing, Heng,Guo, Chongfeng,Zhang, Gongguo,Su, Xiangying,Yang, Zheng,Jeong, Jung Hyun The Royal Society of Chemistry 2012 Journal of materials chemistry Vol.22 No.27

        <P>Ce<SUP>3+</SUP>-doped Ba<SUB>2</SUB>Ln(BO<SUB>3</SUB>)<SUB>2</SUB>Cl (Ln = Gd, Y) phosphors were synthesized through a conventional high-temperature solid state method in CO atmosphere. Structural and spectroscopic characterizations of the samples have been performed by X-ray diffraction and photoluminescence spectra measurements. The phosphors can be efficiently excited by near ultraviolet (n-UV) light resulting in blue emission. The optimal Ce<SUP>3+</SUP> dopant concentrations in both compounds were determined, and the concentration quenching mechanisms were also discussed. The photoluminescence excitation (PLE) and emission (PL) spectra, and decay curves at liquid helium temperature were measured to analyze the crystallographic occupancy sites of Ce<SUP>3+</SUP> in the Ba<SUB>2</SUB>Ln(BO<SUB>3</SUB>)<SUB>2</SUB>Cl (Ln = Gd, Y) hosts. The thermal stabilities of the phosphors Ba<SUB>2</SUB>Ln(BO<SUB>3</SUB>)<SUB>2</SUB>Cl:Ce<SUP>3+</SUP> (Ln = Gd, Y) were studied using the dependence of the luminescence intensities on temperature (300–500 K), and their luminescence quenching temperatures and thermal activation energies were also determined. The results indicate that the phosphor Ba<SUB>2</SUB>Gd(BO<SUB>3</SUB>)<SUB>2</SUB>Cl:Ce<SUP>3+</SUP> offers excellent optical properties as a potential blue-emitting phosphor candidate for n-UV LEDs, such as a higher thermal stability and a stronger luminescence intensity, than those of the phosphor Ba<SUB>2</SUB>Y(BO<SUB>3</SUB>)<SUB>2</SUB>Cl:Ce<SUP>3+</SUP>.</P> <P>Graphic Abstract</P><P>Ce<SUP>3+</SUP>-doped Ba<SUB>2</SUB>Ln(BO<SUB>3</SUB>)<SUB>2</SUB>Cl (Ln = Gd, Y) phosphors were synthesized through a conventional high-temperature solid state method in CO atmosphere. <IMG SRC='http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/image/GA?id=c2jm32761a'> </P>

      • KCI등재

        Modified exosomal SIRPα variants alleviate white matter injury after intracerebral hemorrhage via microglia/macrophages

        Xinjie Gao,Heng Yang,Weiping Xiao,Jiabin Su,Yuwen Zhang,He Wang,Wei Ni,Yuxiang Gu 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: Despite limited efficiency, modulation of microglia/macrophages has shown to attenuate neuroinflammation after intracerebral hemorrhage (ICH). In this context, we evaluated the efficacy of modified exosomal signal regulatory protein α (SIRPα) variants (SIRPα-v Exos) in microglia/macrophages and neuroinflammation-associated white matter injury after ICH. Methods: SIRPα-v Exos were engineered to block CD47-SIRPα interactions. After obtaining SIRPα-v Exos from lentivirus-infected mesenchymal stem cells, C57BL/6 mice suffering from ICH underwent consecutive intravenous injections of SIRPα-v Exos (6 mg/kg) for 14 days. Afterwards, the volume of hematoma and neurological dysfunctions were assessed in mice continuously until 35 days after ICH. In addition, demyelination, electrophysiology and neuroinflammation were evaluated. Furthermore, the mechanisms of microglial regulation by SIRPα-v Exos were investigated in vitro under coculture conditions. Results: The results demonstrated that the clearance of hematoma in mice suffering from ICH was accelerated after SIRPα-v Exo treatment. SIRPα-v Exos improved long-term neurological dysfunction by ameliorating white matter injury. In addition, SIRPα-v Exos recruited regulatory T cells (Tregs) to promote M2 polarization of microglia/macrophages in the peri-hematoma tissue. In vitro experiments further showed that SIRPα-v Exos regulated primary microglia in a direct and indirect manner in synergy with Tregs. Conclusion: Our studies revealed that SIRPα-v Exos could accelerate the clearance of hematoma and ameliorate secondary white matter injury after ICH through regulation of microglia/macrophages. SIRPα-v Exos may become a promising treatment for ICH in clinical practice.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼