RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of cathodic arc PVD parameters on roughness of TiN coating on steel substrate

        M. Ali,E. Hamzah,I.A. Qazi,M.R.M. Toff 한국물리학회 2010 Current Applied Physics Vol.10 No.2

        Titanium nitride which is widely used as a hard coating material was coated on tool steel, by physical vapor deposition method. Surface roughness was investigated as a function of deposition rate, substrate bias and temperature, nitrogen flow rate and metal ion etching. The study showed that increase in surface roughness mainly depends on the condition of sample preparation, surface treatment, macro-droplets,pitting defects, rise in compressive stress at higher coating thickness, growth defects and to a lesser extent selection of surface under testing. It was observed that chromium ion etching significantly reduced the surface roughness compared to titanium ion etching.

      • Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

        Chuan, M.W.,Wong, Y.B.,Hamzah, A.,Alias, N.E.,Sultan, S. Mohamed,Lim, C.S.,Tan, M.L.P. Techno-Press 2022 Advances in nano research Vol.12 No.2

        Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

      • Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method

        M.W. Chuan,S.Z. Lok,A. Hamzah,N.E. Alias,S. Mohamed Sultan,C.S. Lim,M.L.P Tan Techno-Press 2023 Advances in nano research Vol.14 No.1

        Driven by the scaling down of transistor node technology, graphene became of interest to many researchers following the success of its fabrication as graphene nanoribbons (GNRs). However, during the fabrication of GNRs, it is not uncommon to have defects within the GNR structures. Scaling down node technology also changes the modelling approach from the classical Boltzmann transport equation to the quantum transport theory because the quantum confinement effects become significant at sub-10 nanometer dimensions. The aim of this study is to examine the effect of Stone-Wales defects on the electronic properties of GNRs using a tight-binding model, based on Non-Equilibrium Green's Function (NEGF) via numeric computation methods using MATLAB. Armchair and zigzag edge defects are also implemented in the GNR structures to mimic the practical fabrication process. Electronic properties of pristine and defected GNRs of various lengths and widths were computed, including their band structure and density of states (DOS). The results show that Stone-Wales defects cause fluctuation in the band structure and increase the bandgap values for both armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) at every simulated width. In addition, Stone-Wales defects reduce the numerical computation DOS for both AGNRs and ZGNRs. However, when the lengths of the structures increase with fixed widths, the effect of the Stone-Wales defects become less significant.

      • Device modelling and performance analysis of two-dimensional AlSi<sub>3</sub> ballistic nanotransistor

        Chuan, M.W.,Wong, K.L.,Hamzah, A.,Rusli, S.,Alias, N.E.,Lim, C.S.,Tan, M.L.P. Techno-Press 2021 Advances in nano research Vol.10 No.1

        Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.

      • Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

        Chuan, M.W.,Wong, K.L.,Hamzah, A.,Rusli, S.,Alias, N.E.,Lim, C.S.,Tan, M.L.P. Techno-Press 2020 Advances in nano research Vol.9 No.2

        Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

      • Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

        Wong, K.L.,Chuan, M.W.,Chong, W.K.,Alias, N.E.,Hamzah, A.,Lim, C.S.,Tan, M.L.P. Techno-Press 2019 Advances in nano research Vol.7 No.3

        Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

      • Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications

        Chuan, M.W.,Lau, J.Y.,Wong, K.L.,Hamzah, A.,Alias, N.E.,Lim, C.S.,Tan, M.L.P Techno-Press 2021 Advances in nano research Vol.10 No.5

        Silicene, a 2D allotrope of silicon, is predicted to be a potential material for future transistor that might be compatible with present silicon fabrication technology. Similar to graphene, silicene exhibits the honeycomb lattice structure. Consequently, silicene is a semimetallic material, preventing its application as a field-effect transistor. Therefore, this work proposes the uniform doping bandgap engineering technique to obtain the n-type silicene nanosheet. By applying nearest neighbour tight-binding approach and parabolic band assumption, the analytical modelling equations for band structure, density of states, electrons and holes concentrations, intrinsic electrons velocity, and ideal ballistic current transport characteristics are computed. All simulations are done by using MATLAB. The results show that a bandgap of 0.66 eV has been induced in uniformly doped silicene with phosphorus (PSi<sub>3</sub>NW) in the zigzag direction. Moreover, the relationships between intrinsic velocity to different temperatures and carrier concentration are further studied in this paper. The results show that the ballistic carrier velocity of PSi<sub>3</sub>NW is independent on temperature within the degenerate regime. In addition, an ideal room temperature subthreshold swing of 60 mV/dec is extracted from ballistic current-voltage transfer characteristics. In conclusion, the PSi<sub>3</sub>NW is a potential nanomaterial for future electronics applications, particularly in the digital switching applications.

      • Edge perturbation on electronic properties of boron nitride nanoribbons

        K.L. Wong,K.W. Lai,M.W. Chuan,Y. Wong,A. Hamzah,S. Rusli,N.E. Alias,S. Mohamed Sultan,C.S. Lim,M.L.P. Tan Techno-Press 2023 Advances in nano research Vol.15 No.5

        Hexagonal boron nitride (h-BN), commonly referred to as Boron Nitride Nanoribbons (BNNRs), is an electrical insulator characterized by high thermal stability and a wide bandgap semiconductor property. This study delves into the electronic properties of two BNNR configurations: Armchair BNNRs (ABNNRs) and Zigzag BNNRs (ZBNNRs). Utilizing the nearest-neighbour tight-binding approach and numerical methods, the electronic properties of BNNRs were simulated. A simplifying assumption, the Hamiltonian matrix is used to compute the electronic properties by considering the self-interaction energy of a unit cell and the interaction energy between the unit cells. The edge perturbation is applied to the selected atoms of ABNNRs and ZBNNRs to simulate the electronic properties changes. This simulation work is done by generating a custom script using numerical computational methods in MATLAB software. When benchmarked against a reference study, our results aligned closely in terms of band structure and bandgap energy for ABNNRs. However, variations were observed in the peak values of the continuous curves for the local density of states. This discrepancy can be attributed to the use of numerical methods in our study, in contrast to the semi-analytical approach adopted in the reference work.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼