RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer

        Shrimali, D.,Shanmugam, M.K.,Kumar, A.P.,Zhang, J.,Tan, B.K.H.,Ahn, K.S.,Sethi, G. Elsevier Science Ireland 2013 Cancer letters Vol.341 No.2

        Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal, leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer. This review summarizes reported anti-inflammatory and anti-cancer effects of emodin, and re-emphasizes its potential therapeutic role in the treatment of inflammatory diseases and cancer.

      • KCI등재

        Behavior of semi-rigid steel frames under near- and far-field earthquakes

        Vijay Sharma,Mahendra K. Shrimali,Shiv D. Bharti,Tushar K. Datta 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.5

        The realistic modeling of the beam-column semi-rigid connection in steel frames attracted the attention of many researchers in the past for the seismic analysis of semi-rigid frames. Comparatively less studies have been made to investigate the behavior of steel frames with semi-rigid connections under different types of earthquake. Herein, the seismic behavior of semi-rigid steel frames is investigated under both far and near-field earthquakes. The semi-rigid connection is modeled by the multilinear plastic link element consisting of rotational springs. The kinematic hysteresis model is used to define the dynamic behavior of the rotational spring, describing the nonlinearity of the semi-rigid connection as defined in SAP2000. The nonlinear time history analysis (NTHA) is performed to obtain response time histories of the frame under scaled earthquakes at three PGA levels denoting the low, medium and high-level earthquakes. The other important parameters varied are the stiffness and strength parameters of the connections, defining the degree of semi-rigidity. For studying the behavior of the semi-rigid frame, a large number of seismic demand parameters are considered. The benchmark for comparison is taken as those of the corresponding rigid frame. Two different frames, namely, a five-story frame and a ten-story frame are considered as the numerical examples. It is shown that semi-rigid frames prove to be effective and beneficial in resisting the seismic forces for near-field earthquakes (PGA ≈ 0.2g), especially in reducing the base shear to a considerable extent for the moderate level of earthquake. Further, the semi-rigid frame with a relatively weaker beam and less connection stiffness may withstand a moderately strong earthquake without having much damage in the beams.

      • KCI등재

        Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis

        Vijay Sharma,Mahendra K. Shrimali,Shiv D. Bharti,Tushar K. Datta 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.36 No.4

        Responses of semi-rigid frames having different degrees of semi-rigidity obtained by the nonlinear static analysis (NSA) are evaluated at specific target displacements by comparing them with those obtained by the nonlinear time-history analysis (NTHA) for scaled earthquakes. The peak ground accelerations (PGA) of the earthquakes are scaled such that the obtained peak top story displacements match with the target displacements. Three different types of earthquakes are considered, namely, far-field and near-field earthquakes with directivity and fling-step effects. In order to make the study a comprehensive one, three degrees of semi-rigidity (one fully rigid and the other two semi-rigid), and two frames having different heights are considered. An ensemble of five-time histories of ground motion is included in each type of earthquake. A large number of responses are considered in the study. They include the peak top-story displacement, maximum inter-story drift ratio, peak base shear, total number of plastic hinges, and square root of sum of the squares (SRSS) of the maximum plastic hinge rotations. Results of the study indicate that the nonlinear static analysis provides a fairly good estimate of the peak values of top-story displacements, inter-story drift ratio (for shorter frame), peak base shear and number of plastic hinges; however, the SRSS of maximum plastic hinge rotations in semi-rigid frames are considerably more in the nonlinear static analysis as compared to the nonlinear time history analysis.

      • Seismic demand assessment of semi-rigid steel frames at different performance points

        Vijay Sharma,Mahendra K. Shrimali,Shiv D. Bharti,Tushar K. Datta 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.41 No.5

        The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.

      • SCIEKCI등재

        Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

        Naglot, A.,Goswami, S.,Rahman, I.,Shrimali, D.D.,Yadav, Kamlesh K.,Gupta, Vikas K.,Rabha, Aprana Jyoti,Gogoi, H.K.,Veer, Vijay The Korean Society of Plant Pathology 2015 Plant Pathology Journal Vol.31 No.3

        Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, ${\beta}$-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

      • KCI등재

        Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

        A. Naglot,S. Goswami,I. Rahman,D. D. Shrimali,Kamlesh K. Yadav,Vikas K. Gupta,Aprana Jyoti Rabha,H. K. Gogoi,Vijay Veer 한국식물병리학회 2015 Plant Pathology Journal Vol.31 No.3

        Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

      • KCI등재

        Charge transport studies on chemically grown manganite based heterostructures

        Keval Gadani,Khushal Sagapariya,K.N. Rathod,Hetal Boricha,Bhargav Rajyaguru,V.G. Shrimali,A.D. Joshi,K. Asokan,N.A. Shah,P.S. Solanki 한국물리학회 2019 Current Applied Physics Vol.19 No.4

        In this communication, we have successfully fabricated mixed valent La0.7Ca0.3MnO3 (LCMO) manganite based (i) ZnO/LCMO/LAO and (ii) LMO/LCMO/LAO (LMO: LaMnO3–d thin layer; LAO: LaAlO3 substrate) thin film heterostructures using chemical solution deposition (CSD) method. 100 nm LCMO layer was initially grown on single crystalline (100) LAO substrate followed by the growth of 50 nm ZnO and LMO layers separately on the two different heterostructures. In the present study, upper layers of ZnO and LMO were intentionally prepared at 700 °C for 12 h under air environment, thereby some naturally created oxygen vacancies are expected to be present in their lattices. Presence of oxygen vacancies makes ZnO and LMO layers as n–type oxides in the heterostructures. Temperature dependent current–voltage (I–V) characteristics and interface resistivity (under different applied electric fields across interface only) were carried out to understand their charge transport behavior. A strong effect of electric field on the resistivity behavior has been observed due to a reasonable electrically polarizable (active) nature of ZnO and LMO thin layers. Zener double exchange (ZDE) polynomial law has been employed to understand various scattering processes as source of resistivity across, both, ZnO/ LCMO and LMO/LCMO interfaces. Transport properties and charge conduction mechanisms have been discussed and compared for both the interfaces in the context of interface state and barrier between electrically active layer and LCMO film. Also, power consumption criteria have been discussed in detail for the presently studied heterostructures for their practical device applications such as field effect devices, memory devices, read–write head devices or any other spintronic devices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼