http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
장덕진,이진아,Yeon-Su Chae,강봉균 한국분자세포생물학회 2011 Molecules and cells Vol.31 No.2
Phosphodiesterases (PDEs) play important roles in synaptic plasticity by regulating cAMP signaling in various organisms. The supershort, short, and long forms of Aplysia PDE4 (apPDE4) have been cloned, and the long form has been shown to play a crucial role in 5- hydroxytryptamine (5-HT)-induced synaptic plasticity in Aplysia. To address the role of the supershort form in 5-HT-induced synaptic plasticity in Aplysia, we overexpressed the apPDE4 supershort form in Aplysia sensory neurons. Consequently, 5-HT-induced hyperexcitability and short-term facilitation in nondepressed synapses were blocked. However, the su-pershort form did not inhibit 5-HT-induced short-term facilitation in highly depressed synapses. These results show that the supershort form plays an important role in 5-HT-induced synaptic plasticity and disrupts it mainly by impairing cAMP signaling in Aplysia.
장덕진 우송대학교 부설 산업연구원 2002 산업연구 Vol.4 No.1
Computer Science Department in the School of Computer, Electronic & Communication Engineering of the Woosong University runs six laboratories for the purpose of classes and individual student's academic activities. To support user's activities efficiently, the Systems Management Group needs to define the communication procedures between user and the administrator so the user can get service comfortably while the administrator can do the job consistently and effectively; monitoring user's behavior to determine whether the user is doing a proper activity or not; and user's performance evaluation methods to measure the student's level of course work and understanding in the case of cyber classes. In this paper, features that should be included in the development of user management system are discussed and the design concept of the system was presented.
Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1
장덕진,Byungkwan Ban,이진아 한국분자세포생물학회 2011 Molecules and cells Vol.32 No.6
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca^(2+)-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAG-hCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca^(2+)-independent or -depen- dent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca^(2+)/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca^(2+)/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca^(2+)-dependent or -independent manner.