RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels

        Mehmet Eren Gulsan,Abdulkadir Cevik,AhmetEminKurtoglu 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.15 No.2

        In this study, reliability analyses of steel fiber reinforced concrete (SFRC) corbels based on stochastic finite element were performed for the first time in literature. Prior to stochastic finite element analysis, an experimental database of 84 sfrc corbels was gathered from literature. These sfrc corbels were modeled by a special finite element program. Results of experimental studies and finite element analysis were compared and found to be very close to each other. Furthermore experimental crack patterns of corbel were compared with finite element crack patterns and were observed to be quite similar. After verification of the finite element models, stochastic finite element analyses were implemented by a specialized finite element module. As a result of stochastic finite element analysis, appropriate probability distribution functions (PDF’s) were proposed. Finally, coefficient of variation, bias and strength reduction (resistance) factors were proposed for sfrc corbels as a consequence of stochastic based reliability analysis.

      • 비선형 유한요소해석 프로그램을 이용한 차체 구조물의 동강성 및 정강성 해석

        김성현(Sunghyun Kim),김형일(Hyungil Kim),변형배(Hyungbai Byun),김동석(Dongseok Kim),이용훈(Yonghoon Lee),김일환(Ilhwan Kim),허승진(Seung Jin Heo),임홍재(Hong Jae Yim) 한국자동차공학회 2011 한국자동차공학회 부문종합 학술대회 Vol.2011 No.5

        In this study, dynamic stiffness analysis and static stiffness analysis were conducted by using nonlinear finite element analysis program and linear finite element analysis respectively to compare the results and to confirm reliability about results of nonlinear finite element analysis program. First, dynamic stiffness analysis has been performed on side out panel, crash box, sub-frame and BIW(Body In White) that has been connected with front bumper, rear bumper and sub-frame. Second, static stiffness analysis has been conducted on crash box and hood that has been modeled with spot weld elements and rigid body elements. Consequently, differences of dynamic and static stiffness analysis results through nonlinear finite element analysis program and linear finite element analysis were below 6 % but difference was more than 6 % as to dynamic stiffness of BIW.

      • KCI등재

        Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

        Hasan M. Albegmprli,AbdulkadirÇevik,M. ErenGülşan,AhmetEminKurtoglu 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.15 No.2

        The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

      • KCI등재후보

        Performance-based structural fire design of steel frames using conventional computer software

        Y.K. Chan,F.G. Albermani,S.L. Chan,C.K. Iu 국제구조공학회 2010 Steel and Composite Structures, An International J Vol.10 No.3

        Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

      • KCI등재

        The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior

        김민관 한국도로학회 2009 한국도로학회논문집 Vol.11 No.1

        With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and finegrained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FEprogram, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and threedimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration’s National Airport Pavement Test Facility (FAA’s NAPTF).

      • SCIESCOPUS

        Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

        Bahrami, Alireza,Badaruzzamana, Wan Hamidon Wan,Osmanb, Siti Aminah Techno-Press 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.3

        This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength $f_c$ and cold-formed steel sheet yield stress $f_{yp}$ on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength $f_c$ of the concrete and yield stress $f_{yp}$ of the cold-formed steel sheet influence the performance of the columns significantly.

      • SCIESCOPUS

        Nonlinear interaction behaviour of plane frame-layered soil system subjected to seismic loading

        Agrawal, Ramakant,Hora, M.S. Techno-Press 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.41 No.6

        The foundation of a tall building frame resting on settable soil mass undergoes differential settlements which alter the forces in the structural members significantly. For tall buildings it is essential to consider seismic forces in analysis. The building frame, foundation and soil mass are considered to act as single integral compatible structural unit. The stress-strain characteristics of the supporting soil play a vital role in the interaction analysis. The resulting differential settlements of the soil mass are responsible for the redistribution of forces in the superstructure. In the present work, the nonlinear interaction analysis of a two-bay ten-storey plane building frame- layered soil system under seismic loading has been carried out using the coupled finite-infinite elements. The frame has been considered to act in linear elastic manner while the soil mass to act as nonlinear elastic manner. The subsoil in reality exists in layered formation and consists of various soil layers having different properties. Each individual soil layer in reality can be considered to behave in nonlinear manner. The nonlinear layered system as a whole will undergo differential settlements. Thus, it becomes essential to study the structural behaviour of a structure resting on such nonlinear composite layered soil system. The nonlinear constitutive hyperbolic soil model available in the literature is adopted to model the nonlinear behaviour of the soil mass. The structural behaviour of the interaction system is investigated as the shear forces and bending moments in superstructure get significantly altered due to differential settlements of the soil mass.

      • KCI등재

        Nonlinear interaction behaviour of plane frame-layered soil system subjected to seismic loading

        Ramakant Agrawal,M.S. Hora 국제구조공학회 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.41 No.6

        The foundation of a tall building frame resting on settable soil mass undergoes differential settlements which alter the forces in the structural members significantly. For tall buildings it is essential to consider seismic forces in analysis. The building frame, foundation and soil mass are considered to act as single integral compatible structural unit. The stress-strain characteristics of the supporting soil play a vital role in the interaction analysis. The resulting differential settlements of the soil mass are responsible for the redistribution of forces in the superstructure. In the present work, the nonlinear interaction analysis of a two-bay ten-storey plane building frame- layered soil system under seismic loading has been carried out using the coupled finite-infinite elements. The frame has been considered to act in linear elastic manner while the soil mass to act as nonlinear elastic manner. The subsoil in reality exists in layered formation and consists of various soil layers having different properties. Each individual soil layer in reality can be considered to behave in nonlinear manner. The nonlinear layered system as a whole will undergo differential settlements. Thus, it becomes essential to study the structural behaviour of a structure resting on such nonlinear composite layered soil system. The nonlinear constitutive hyperbolic soil model available in the literature is adopted to model the nonlinear behaviour of the soil mass. The structural behaviour of the interaction system is investigated as the shear forces and bending moments in superstructure get significantly altered due to differential settlements of the soil mass.

      • KCI등재

        Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading

        Alireza Bahrami,Wan Hamidon Wan Badaruzzaman,Siti Aminah Osman 국제구조공학회 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.3

        This paper investigates the nonlinear analysis of concrete-filled steel composite columns subjected to axial loading to predict the ultimate load capacity and behaviour of the columns. Finite element software LUSAS is used to conduct the nonlinear analyses. The accuracy of the finite element modelling is verified by comparing the result with the corresponding experimental result reported by other researchers. Nonlinear analyses are done to study and develop different shapes and number of cold-formed steel sheeting stiffeners with various thicknesses of cold-formed steel sheets. Effects of the parameters on the ultimate axial load capacity and ductility of the concrete-filled steel composite columns are examined. Effects of variables such as concrete compressive strength f_c and cold-formed steel sheet yield stress f_yp on the ultimate axial load capacity of the columns are also investigated. The results are shown in the form of axial load-normalized axial shortening plots. It is concluded from the study that the ultimate axial load capacity and behaviour of the concrete-filled steel composite columns can be accurately predicted by the proposed finite element modelling. Results in this study demonstrate that the ultimate axial load capacity and ductility of the columns are affected with various thicknesses of steel sheets and different shapes and number of stiffeners. Also, compressive strength f_c of the concrete and yield stress f_yp of the cold-formed steel sheet influence the performance of the columns significantly.

      • KCI등재

        Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan’s March 11 earthquake

        Zuo-zhou Zhao,An Duan,Ju Che,Jia-ru Qian,Wei-liang Jin 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.13 No.1

        To evaluate the behavior of the advanced unbonded pre-stressed concrete containment vessel (UPCCV) for one typical China nuclear power plant under Japan’s March 11 earthquake, five nonlinear time history analysis and a nonlinear static analysis of a 1:10 scale UPCCV structure have been carried out with MSC.MARC finite element program. Comparisons between the analytical and experimental results demonstrated that the developed finite element model can predict the earthquake behavior of the UPCCV with fair accuracy. The responses of the 1:10 scale UPCCV subjected to the 11 March 2011 Japan earthquakes recorded at the MYG003 station with the peak ground acceleration (PGA) of 781 gal and at the MYG013 station with the PGA of 982 gal were predicted by the dynamic analysis. Finally, a static analysis was performed to seek the ultimate load carrying capacity for the 1:10 scale UPCCV.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼