RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Occurrence of black shoot blight in apple and pear trees in Korea

        이미현,이용환,이성찬,최효원,양미숙,문제선,권석윤,유준명 충남대학교 농업과학연구소 2023 Korean Journal of Agricultural Science Vol.50 No.4

        Erwinia pyrifoliae, which causes black shoot blight in apple and pear trees, was first identified in Korea in 1995. Extensive measures are typically used to control the disease by eradicating trees in diagnosed orchards, owing to the detrimental impact of the disease on apple and pear production. However, despite governmental efforts, the disease has continuously spread. In this study, we analyzed the current status of the black shoot blight occurrence in apple and pear orchards between 1995 to 2022. Our findings reveal that over the past 28 years, black shoot blight has occurred in 26 cities and districts across five Korean provinces. The affected regions are predominantly concentrated in the northern part of Korea, including the Gangwon and Gyeonggi provinces. Furthermore, black shoot blight has gradually expanded to the northern provincial regions of Chungbuk, Chungnam, and Gyeongbuk, which are centrally situated in Korea. Furthermore, the occurrence pattern of black shoot blight differed between apple and pear orchards; in apple orchards, black shoot blight occurred consistently each year, with a sudden increase in cases in 2020; however, in pear orchards, it has considerably decreased since 2007. To the best of our knowledge, this is the first comprehensive report on the occurrence of black shoot blight in apple and pear trees in 28 years, and the results will provide valuable insights for future disease management strategies.

      • KCI등재

        Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

        Gyu Min Lee,Seyoung Ko,Eom-Ji Oh,Yu-Rim Song,Donghyuk Kim,Chang-Sik Oh 한국식물병리학회 2020 Plant Pathology Journal Vol.36 No.5

        Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.

      • KCI등재

        사과나무에서 가지검은마름병 억제를 위한 효율적 가지치기

        한규석,유지강,이한별,오창식,예미지,이종호,박덕환 한국식물병리학회 2016 식물병연구 Vol.22 No.4

        Black shoot blight disease caused by Erwinia pyrifoliae have damaged economic loss to apple and pear growers until now since it was firstly reported in 1995 in Korea. This study was performed to reduce economic loss by mandatory eradication of all infected trees in case of more 10% disease incidence per orchard as official control. It also aims to set up effective management protocol for this disease by examining how far bacterial pathogen is present from the border of symptomatic and asymptomatic regions in infected apple twigs. Colony-PCR using isolated bacterial cells instead of genomic DNA was used to identify bacterial pathogen, EpSPF/EpSPR primer designed in enterobacterial repetitive intergenic consensus (ERIC) region was selected as specific for E. pyrifoliae. As results of monitoring of this disease during April to October in 2014–2015 by colony-PCR, occurrence of this disease was frequent from mid-May to early-July, when daily average temperature was around 25oC. Moreover, bacterial cells were continuously detected only in symptomatic regions and also asymptomatic regions of less than 20 cm from symptomatic regions. Therefore, we concluded that pruning of infected twigs at the region of more than 20 cm from symptomatic regions might be effective to manage black shoot blight disease in apple trees.

      • KCI등재

        Development of the Droplet Digital PCR Method for the Detection and Quantification of Erwinia pyrifoliae

        Lin He,김성환,유준명 한국식물병리학회 2023 Plant Pathology Journal Vol.39 No.1

        Black shoot blight disease caused by Erwinia pyrifoliae has serious impacts on quality and yield in pear production in Korea; therefore, rapid and accurate methods for its detection are needed. However, traditional detection methods require a great deal of time and fail to achieve absolute quantification. In the present study, we developed a droplet digital polymerase chain reaction (ddPCR) method for the detection and absolute quantification of E. pyrifoliae using a pair of species-specific primers. The detection range was 103- 107 copies/ml (DNA templates) and cfu/ml (cell culture templates). This new method exhibited good linearity and repeatability and was validated by absolute quantification of E. pyrifoliae DNA copies from samples of artificially inoculated immature pear fruits. Here, we present the first study of ddPCR assay for the detection and quantification of E. pyrifoliae. This method has potential applications in epidemiology and for the early prediction of black shoot blight outbreaks.

      • SCIEKCI등재

        Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

        Park, Jungkum,Lee, Gyu Min,Kim, Donghyuk,Park, Duck Hwan,Oh, Chang-Sik The Korean Society of Plant Pathology 2018 Plant Pathology Journal Vol.34 No.5

        Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to $50^{\circ}C$, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

      • KCI등재

        Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

        Jeong Ho Choi,Jong-Yea Kim,박덕환 한국식물병리학회 2022 Plant Pathology Journal Vol.38 No.4

        Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/ district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.

      • SCIEKCI등재SCOPUS

        Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

        Jungkum Park,Gyu Min Lee,Donghyuk Kim,Duck Hwan Park,Chang-Sik Oh 한국식물병리학회 2018 Plant Pathology Journal Vol.34 No.5

        Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to 50oC, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

      • KCI등재

        Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight

        이규민,오엄지,고세영,박정금,박덕환,김동혁,오창식,Lee, Gyu Min,Oh, Eom-Ji,Ko, Seyoung,Park, Jungkum,Park, Duck Hwan,Kim, Donghyuk,Oh, Chang-Sik The Microbiological Society of Korea 2018 미생물학회지 Vol.54 No.1

        Erwinia pyrifoliae는 그람 음성 세균으로 사과와 배에 가지검은마름병을 일으킨다. E. pyrifoliae EpK1/15 균주가 병징을 보이는 경기도 포천지역의 사과나무 가지에서 2014년도에 분리되었다. 본 논문에서는 PacBio RS II 플랫폼을 이용하여 E. pyrifoliae EpK1/15 균주의 전체 유전체를 분석하여 보고한다. 본 균주는 G + C 비율이 53.4%이며, 4,027,225 bp로 구성된 염색체와 G + C 비율이 50.3%이며, 48,456 bp로 구성된 plasmid를 지니고 있다. 이들 염색체와 plasmid DNA에서 3,798개의 단백질 코딩 유전자, 22개의 rRNA, 77개의 tRNA, 13개의 non-coding RNA 및 231개의 위유전자(pseudo gene)가 확인되었다. Erwinia pyrifoliae is a Gram-negative bacterium causing black shoot blight in apple and Asian pear trees. E. pyrifoliae strain EpK1/15 was isolated in 2014 from an apple twig from the Pocheon, Gyeonggi-do, South Korea. In this study, we report the draft genome sequence of E. pyrifoliae EpK1/15 using PacBio RS II platform. The draft genome is comprised of a circular chromosome with 4,027,225 bp and 53.4% G + C content and a plasmid with 48,456 bp and 50.3% G + C content. The draft genome includes 3,798 protein-coding genes, 22 rRNA genes, 77 tRNA genes, 13 non-coding RNA genes, and 231 pseudo genes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼