RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ion Beam Emittance Measurement Based on Transformation Matrix Theory

        L. D. Yu,T. Vilaithong 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.53 No.6

        In order to develop a high-quality ion beam line for bioengineering research and applications, the ion beam emittance of a beam line was measured to provide information on designing the following beam optics to meet the ion beam’s bioengineering requirements. The measurement was based on the transformation matrix theory for electrostatic and magnetic devices. The experimental setup included an ion source, an Einzel lens, a self-developed quadrupole magnetic lens and a multi-wire beam profile monitor. In the measurement, the beam size was first measured at the beam profile monitor as a function of focusing and was then fitted to the transformation matrix parameters. Finally, the best-fitted parameters were used to construct the phase ellipse of the beam’s emittance. The details on the relevant theory and measurement are described and the results are presented.

      • KCI등재

        Reference X-ray Irradiation System for Personal Dosimeter Testing and Calibration of Radiation Detector

        Lee, Seung Kyu,Chang, Insu,Kim, Sang In,Lee, Jungil,Kim, Hyoungtaek,Kim, Jang-Lyul,Kim, Min Chae The Korean Association for Radiation Protection 2019 방사선방어학회지 Vol.44 No.2

        Background: In the calibration and testing laboratory of Korea Atomic Energy Research Institute, the old X-ray generator used for the production of reference X-ray fields was replaced with a new one. For this newly installed X-ray irradiation system, beam alignment as well as the verification of beam qualities was conducted. Materials and Methods: The existing X-ray generator, Phillips MG325, was replaced with YXLON Y.TU 320-D03 in order to generate reference X-ray fields. Theoretical calculations and Monte Carlo simulations were used to determine initial filter thickness. Beam alignment was performed in three steps to deliver a homogeneous radiation dosage to the target at different distances. Finally, the half-value layers were measured for different X-ray fields to verify beam qualities by using an ion chamber. Results and Discussion: Beam alignment was performed in three steps, and collimators and other components were arranged to maintain the uniformity of the mean air kerma rate within ${\pm}2.5%$ at the effective beam diameter of 28 cm. The beam quality was verified by using half-value layer measurement methods specified by American National Standard Institute (ANSI) N13.11-2009 and International Organization for Standardization (ISO)-4037. For each of the nine beams than can be generated by the new X-ray irradiation system, air kerma rates for X-ray fields of different beam qualifies were measured. The results showed that each air kerma rate and homogeneity coefficient of the first and second half-value layers were within ${\pm}5%$ of the recommended values in the standard documents. Conclusion: The results showed that the new X-ray irradiation system provides beam qualities that are as high as moderate beam qualities offered by National Institute of Standards and Technology in ANSI N13.11-2009 and those for narrow-spectrum series of ISO-4037.

      • KCI등재후보

        Soft Tissue Measurement Method Using Radiopaque Material on Cone-beam Computed Tomography: An Ex Vivo Validation Study

        이해석,이동원,윤정호 대한구강악안면임플란트학회 2018 대한구강악안면임프란트학회지 Vol.22 No.4

        Purpose: The purpose of this study was to investigate the validity and reproducibility of a method based on cone-beam computed tomography (CBCT) technology for the visualization and measurement of gingival soft-tissue dimensions. Material and Methods: A total of 66 selected points in soft-tissue of the ex vivo head of an adult pig were investigated in this study. For the measurement of radiographic thickness (RT), wet softtissue surfaces were lightly covered with barium sulfate powder using a powder spray. CBCT was taken and DICOM files were assessed for soft-tissue thickness measurement at reference points. A periodontal probe and a rubber stop were used for the measurement of trans-gingival probing thickness (TPT). After flap elevation, actual thickness of soft-tissue (actual thickness, AT) was measured. Correlation analysis and intraclass correlation coefficients analysis (ICC) were performed for AT, TPT, and RT. Results: All variables were distributed normally. Strong significant correlations of AT with RT and TPT values were found. The two ICC values between TPT vs. AT and RT vs. AT differed significantly. Conclusion: Our results indicated that correlation of RT was stronger than that of TPT with AT. We concluded that soft tissue measurement with Ⅰ. Introduction : Previously, a noninvasive method using a radiopaque material and periapical radiography to measure the vertical length of the interdental papilla in natural teeth and implants was proposed1-3. By using radiopaque material, it was possible to demarcate soft tissue, without underexposing radiography. However, such two-dimensional information limits the assessment of the whole periodontium. The metric assessment of soft tissue dimensions around teeth and implants is of great clinical interest for the quantification and monitoring of gingival changes during therapies. Gingival soft tissue dimensions play significant roles in the assessment of whole treatment success, and thus should be monitored all through therapy. A lack of gingival thickness showed a tendency towards loss in attachment levels after traumatic, inflammatory, or surgical injuries4. Likewise, orthodontic tooth movement may adversely affect the mucogingival complex, especially at sites in which the keratinized gingiva and underlying bone appeared thin5. Acceptable methods for the accurate quantification of tissue changes when assessing new treatment modalities and materials influencing soft tissues are thus needed6. Cone-beam computed tomography (CBCT) is used routinely for imaging analyses of the maxillofacial region7. This modality provides clinicians with high-quality diagnostic images and has become an important tool in dentistry. However, the inability of CBCT to distinguish overlapped soft tissues, such as mucogingival thickness on the buccal side of alveolar bone, has limited its application exclusively to the imaging of hard maxillofacial tissues8. Several studies reported using CBCT9-12 for studying soft tissue thickness. Although validation process was not reported, these studies showed us a possibility to study delicate mucogingival soft tissue by retracting overlapped soft tissue. However, one validation study reported that soft tissues less than 0.5mm was not possible to be confirmed in spiral CT, thus making the application of spiral CT in very thin mucosa questionable13. In this study, we describe a method based on CBCT technology for the visualization and measurement of soft tissue dimensions, after demarcating the soft tissue with radiopaque material. The aim of this study was to investigate the validity and reproducibility of this method. Ⅴ. Conclusion : In conclusion, the results of the present study suggest that soft tissue measurement with CBCT and radiopaque material could be a reliable method, compared to the trans-gingival probing measurement method, with good validity and reproducibility.

      • KCI등재

        광패턴을 이용한 능동형 수위 및 거리 측정 기법

        김낙우(Nac-Woo Kim),손승철(Seung-Chul Son),이문섭(Mun-Seob Lee),민기현(Gi-Hyeon Min),이병탁(Byung-Tak Lee) 대한전자공학회 2015 전자공학회논문지 Vol.52 No.4

        본 논문은 광패턴 조사를 통한 능동형 수위 및 거리 측정 기법을 제안한다. 기존 압력식, 부자식, 초음파식, 레이더식 등의 수위측정기법과 달리 최근에는 수위측정의 정확성과 모니터링 편리성을 강조한 영상기반 수위측정기법이 활용되고 있다. 본 논문에서는 참조용 광패턴을 교각이나 제방 등에 동적으로 조사(照射)하고, 카메라 장치로부터 조사된 광패턴 영상을 실시간 분석 처리하여 자동 수위측정 및 조사(照射) 대상물까지의 거리측정을 위한 새로운 방법을 제시한다. 기존 방법이 교각에 기(旣) 부착된 수위표나 마커 인식을 위해 수동적으로 영상데이터를 분석하는 것이었다면, 본 기법은 교각 설치 환경에 대응하여 능동적으로 참조 광패턴을 생성하여 사용함으로써, 난시야(難視野) 환경 및 잡음 대응에 효과적이고, 포터블 형태로 주야간 이용이 가능하며, 별도 조명 설치를 요구하지 않는 등의 강건한 수위 측정을 지원한다. 본 실험은 실내 시험 환경을 구성하여 시뮬레이션 하였으며, 0.4-1.4m 거리 13.5-32.5cm 높이에서 수위 및 거리 측정을 수행하였다. In this paper, we propose an active water level and distance measurement algorithm using a light beam pattern. On behalf of conventional water level gauge types of pressure, float-well, ultrasonic, radar, and others, recently, extensive research for video analysis based water level measurement methods is gradually increasing as an importance of accurate measurement, monitoring convenience, and much more has been emphasized. By turning a reference light beam pattern on bridge or embankment actively, we suggest a new approach that analyzes and processes the projected light beam pattern image obtained from camera device, measures automatically water level and distance between a camera and a bridge or a levee. As contrasted with conventional methods that passively have to analyze captured video information for recognition of a watermark attached on a bridge or specific marker, we actively use the reference light beam pattern suited to the installed bridge environment. So, our method offers a robust water level measurement. The reasons are as follows. At first, our algorithm is effective against unfavorable visual field, pollution or damage of watermark, and so on, and in the next, this is possible to monitor in real-time the portable-based local situation by day and night. Furthermore, our method is not need additional floodlight. Tests are simulated under indoor environment conditions from distance measurement over 0.4-1.4m and height measurement over 13.5-32.5cm.

      • KCI등재

        Effect of slice inclination and object position within the field of view on the measurement accuracy of potential implant sites on cone-beam computed tomography

        Bardia Vadiati Saberi,Negar Khosravifard,Alireza Nourzadeh 대한영상치의학회 2020 Imaging Science in Dentistry Vol.50 No.1

        Purpose: The purpose of this study was to evaluate the accuracy of linear measurements in the horizontal and vertical dimensions based on object position and slice inclination in cone-beam computed tomography (CBCT) images. Materials and Methods: Ten dry sheep hemi-mandibles, each with 4 sites (incisor, canine, premolar, and molar), were evaluated when either centrally or peripherally positioned within the field of view (FOV) with the image slices subjected to either oblique or orthogonal inclinations. Four types of images were created of each region: central/ cross-sectional, central/coronal, peripheral/cross-sectional, and peripheral/coronal. The horizontal and vertical dimensions were measured for each region of each image type. Direct measurements of each region were obtained using a digital caliper in both horizontal and vertical dimensions. CBCT and direct measurements were compared using the Bland-Altman plot method. P values <0.05 were considered to indicate statistical significance. Results: The buccolingual dimension of the incisor and premolar areas and the height of the incisor, canine, and molar areas showed statistically significant differences on the peripheral/coronal images compared to the direct measurements (P<0.05). Molar area height in the central/coronal slices also differed significantly from the direct measurements (P<0.05). Cross-sectional images of either the central or peripheral position had no marked difference from the gold-standard values, indicating sufficient accuracy. Conclusion: Peripheral object positioning within the FOV in combination with applying an orthogonal inclination to the slices resulted in significant inaccuracies in the horizontal and vertical measurements. The most undesirable effect was observed in the molar area and the vertical dimension.

      • SCOPUSKCI등재

        Accuracy of virtual models in the assessment of maxillary defects

        Kamburoglu, Kivanc,Kursun, Sebnem,Kilic, Cenk,Ozen, Tuncer Korean Academy of Oral and Maxillofacial Radiology 2015 Imaging Science in Dentistry Vol.45 No.1

        Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

      • KCI등재

        Flattening Filter Free Beam의 정도관리를 위한 곡면선량계 가능성 연구

        한무재 ( Moojae Han ),신요한 ( Yohan Shin ),정재훈 ( Jaehoon Jung ),허승욱 ( Seunguk Heo ),김교태 ( Kyotae Kim ),허예지 ( Yeji Heo ),조흥래 ( Heunglae Cho ),박성광 ( Sungkwang Park ) 한국방사선학회 2019 한국방사선학회 논문지 Vol.13 No.1

        최근 도입된 FFF 빔을 활용하는 방사선치료는 flattening filter에서 비롯되는 빔의 감쇠를 막을 수 있어 치료효율을 높일 수 있지만, 불균일한 단면적 선량분포에 대하여 정확한 정도관리가 구축되어 있지 않은 실정이다. 이에 본 연구에서는 광도전체 물질 HgI<sub>2</sub> 기반의 곡면 선량계를 제작하였으며, 성능을 검증하기 위하여 6 MV 광자에너지에서 재현성 및 선형성을 평가하였다. 또한 곡면 계측의 유용성을 나타내기 위하여 아크릴 필터를 적용한 FFF beam에서 평면 기판과 곡면 기판 상에서 계측되는 신호를 비교하였다. 그 결과 Unit cell 선량계의 재현성은 SE 0.613%, 선형성은 R-sq 0.9999로 나타났으며, line array 곡면 선량계의 유용성 평가는 평면 기판에서 23.337%, 곡면 기판에서 12.264%로 11.073%p 감소된 신호 차이를 보였다. Radiation therapy using flattening filter free beam can prevent beam attenuation caused by flattening filter and can improve treatment efficiency. However, accurate dose control is not established for nonuniform iso dose distributions. In this study, curved dosimeter based on photoconductive material HgI<sub>2</sub> was fabricated and its reproducibility and linearity were evaluated at 6 MV photon energy to verify its performance. In order to show the usefulness of the curved measurement, the signals measured on the flat substrate and the curved substrate were compared in the flattening filter free beam using the acrylic filter. As a result, the reproducibility of the unit cell dosimeter was evaluated as SE 0.613%, and the linearity was evaluated as R-sq 0.9999. The usability evaluation of the array curve dosimeter demonstrated its usefulness by indicating a curvature error rate of 11.073%p and a reduced error rate.

      • KCI등재

        Accuracy of virtual models in the assessment of maxillary defects

        Kıvanc Kamburoglu,Sebnem Kursun,Cenk Kılıc,Tuncer Özen 대한영상치의학회 2015 Imaging Science in Dentistry Vol.45 No.1

        Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) 60×60 mm FOV, 0.125 mm3 (FOV60); 2) 80×80 mm FOV, 0.160 mm3 (FOV80); and 3) 100×100 mm FOV, 0.250 mm3 (FOV100). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

      • SCOPUSKCI등재

        Effect of slice inclination and object position within the field of view on the measurement accuracy of potential implant sites on cone-beam computed tomography

        Saberi, Bardia Vadiati,Khosravifard, Negar,Nourzadeh, Alireza Korean Academy of Oral and Maxillofacial Radiology 2020 Imaging Science in Dentistry Vol.50 No.1

        Purpose: The purpose of this study was to evaluate the accuracy of linear measurements in the horizontal and vertical dimensions based on object position and slice inclination in cone-beam computed tomography (CBCT) images. Materials and Methods: Ten dry sheep hemi-mandibles, each with 4 sites (incisor, canine, premolar, and molar), were evaluated when either centrally or peripherally positioned within the field of view (FOV) with the image slices subjected to either oblique or orthogonal inclinations. Four types of images were created of each region: central/cross-sectional, central/coronal, peripheral/cross-sectional, and peripheral/coronal. The horizontal and vertical dimensions were measured for each region of each image type. Direct measurements of each region were obtained using a digital caliper in both horizontal and vertical dimensions. CBCT and direct measurements were compared using the Bland-Altman plot method. P values <0.05 were considered to indicate statistical significance. Results: The buccolingual dimension of the incisor and premolar areas and the height of the incisor, canine, and molar areas showed statistically significant differences on the peripheral/coronal images compared to the direct measurements (P<0.05). Molar area height in the central/coronal slices also differed significantly from the direct measurements (P<0.05). Cross-sectional images of either the central or peripheral position had no marked difference from the gold-standard values, indicating sufficient accuracy. Conclusion: Peripheral object positioning within the FOV in combination with applying an orthogonal inclination to the slices resulted in significant inaccuracies in the horizontal and vertical measurements. The most undesirable effect was observed in the molar area and the vertical dimension.

      • KCI등재

        A study of Curved Dosimeter for Flattening Filter Free Beam Quality Assurance Evaluation using Curved Dosimeter in Radiotherapy

        Moojae Han,Yohan Shin,Jaehoon Jung,Seunguk Heo,Kyotae Kim,Yeji Heo,Heunglae Cho,Sungkwang Park 한국방사선학회 2019 한국방사선학회 논문지 Vol.13 No.1

        최근 도입된 FFF 빔을 활용하는 방사선치료는 flattening filter에서 비롯되는 빔의 감쇠를 막을 수 있어 치료효율을 높일 수 있지만, 불균일한 단면적 선량분포에 대하여 정확한 정도관리가 구축되어 있지 않은 실정이다. 이에 본 연구에서는 광도전체 물질 HgI2 기반의 곡면 선량계를 제작하였으며, 성능을 검증하기 위하여 6 MV 광자에너지에서 재현성 및 선형성을 평가하였다. 또한 곡면 계측의 유용성을 나타내기 위하여 아크릴 필터를 적용한 FFF beam에서 평면 기판과 곡면 기판 상에서 계측되는 신호를 비교하였다. 그 결과 Unit cell 선량계의 재현성은 SE 0.613%, 선형성은 R-sq 0.9999로 나타났으며, line array 곡면 선량계의 유용성 평가는 평면 기판에서 23.337%, 곡면 기판에서 12.264%로 11.073%p 감소된 신호 차이를 보였 다. Radiation therapy using flattening filter free beam can prevent beam attenuation caused by flattening filter and can improve treatment efficiency. However, accurate dose control is not established for nonuniform iso dose distributions. In this study, curved dosimeter based on photoconductive material HgI2 was fabricated and its reproducibility and linearity were evaluated at 6 MV photon energy to verify its performance. In order to show the usefulness of the curved measurement, the signals measured on the flat substrate and the curved substrate were compared in the flattening filter free beam using the acrylic filter. As a result, the reproducibility of the unit cell dosimeter was evaluated as SE 0.613%, and the linearity was evaluated as R-sq 0.9999. The usability evaluation of the array curve dosimeter demonstrated its usefulness by indicating a curvature error rate of 11.073%p and a reduced error rate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼