RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A study on the exit flow characteristics determined by the orifice configuration of multi-perforated tubes

        Sangkyoo Lee,Namsoo Moon,Jeekeun Lee 대한기계학회 2012 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.26 No.9

        A multi-perforated tube indicates the existence of multiple holes in various shapes on the surface of long cylinder-type or rectangular tubes, and the hole installed on the surface is called an orifice as it is relatively small in size, compared with the surface area of the tubes. In this study, flowrate distribution features and changes in discharge angle according to the blockage ratio resulting from the changes in the number of orifices and the thickness of multi-perforated tubes were investigated by means of analysis and experiment, targeting the multi-perforated tubes where rectangular orifices are installed on the both sides of square tubes. In addition, contraction coefficient and flow coefficient between orifices were analytically investigated. The more increase in blockage ratio of multi-perforated tubes, the more uniform flowrate distribution between orifices. The discharge angle becomes more and more perpendicular in the longitudinal direction of multi-perforated tubes as it gets closer to the end of orifices, exhibiting big differences at the entrance if blockage ratio is small. The more increase in the thickness of multi-perforated tubes, the more uniform flowrate distribution between orifices become as contraction coefficient increases. The flow coefficient distribution of orifices using the pressure at the entrance of the orifices of multi-perforated tubes increases in the longitudinal direction of the multi-perforated tubes, exhibiting values ranging from 0.66 to 0.68 as to BR = 0.893 ~0.979.

      • 촉매 삽입형 Urea-SCR 머플러의 내부유동 연구

        문남수(Namsoo Moon),이상규(Sangkyoo Lee),이지근(Jeekeun Lee) 한국자동차공학회 2013 한국자동차공학회 지부 학술대회 논문집 Vol.2013 No.5-1

        This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased NOx reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

      • KCI등재

        다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향

        이상규(Sang-Kyoo Lee),이지근(Jee-Keun Lee) 대한설비공학회 2013 설비공학 논문집 Vol.25 No.6

        A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.

      • 다공튜브 오리피스 차단비에 대한 연구

        문남수(Namsoo Moon),이상규(Sangkyoo Lee),이지근(Jeekeun Lee) 한국자동차공학회 2013 한국자동차공학회 지부 학술대회 논문집 Vol.2013 No.5-1

        A multi-perforated tube indicates the existence of multi holes in various shapes on the surface of long cylinder-type or rectangular tubes. In this study, the flow characteristics of the circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharged angle, effective flow area ratio were measured and visualized with the variation of the orifice area ratio at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.

      • KCI등재

        원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과

        김현실,마평식,김봉기,이성현,서윤호 한국음향학회 2020 韓國音響學會誌 Vol.39 No.4

        In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation. 본 논문은 원통형 임피던스 튜브내에 설치된 다중 미세천공판(Micro-Perforated Plate, MPP)의 음향투과를해석적으로 구하는 방법을 다루었다. 판의 진동을 무한 급수의 합으로 전개하였는데 반경방향으로는 Bessel 함수를포함한다. 평면파 가정하에서 저주파수 대역의 근사식을 유도하였으며 전달함수법을 이용하여 다중 MPP에 대한 음향투과율 공식을 제시하였다. 단일과 이중 MPP의 음향투과손실(Sound Transmission Loss, STL)을 본 논문에서 제안한 공식을 이용하여 계산하였으며 유한요소법(Finite Element Method, FEM)을 사용한 결과와 잘 일치 하였다. 천공율이 증가할수록 STL은 감소하는데 이는 판의 진동보다는 천공율이 더 큰 영향을 주기 때문이다. STL은 판의 공진주파수에서 골(dip)을 보이며 이중 MPP의 STL은 질량-스프링-질량 진동에 해당하는 공진주파수에서 골을 보인다. 본 연구에서 제안한 STL 예측 모델은 임의의 개수의 다중 MPP에 적용이 가능하며 각각의 판은 미세천공을 포함하거나 포함하지 않는 두 가지 경우가 모두 가능하다.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼